5mq0 Citations

Structure of a spliceosome remodelled for exon ligation.

OpenAccess logo Nature 542 377-380 (2017)
Related entries: 5gam, 5gan, 5gao, 5gap, 5lj3, 5lj5, 5mps

Cited: 94 times
EuropePMC logo PMID: 28076345

Abstract

The spliceosome excises introns from pre-mRNAs in two sequential transesterifications-branching and exon ligation-catalysed at a single catalytic metal site in U6 small nuclear RNA (snRNA). Recently reported structures of the spliceosomal C complex with the cleaved 5' exon and lariat-3'-exon bound to the catalytic centre revealed that branching-specific factors such as Cwc25 lock the branch helix into position for nucleophilic attack of the branch adenosine at the 5' splice site. Furthermore, the ATPase Prp16 is positioned to bind and translocate the intron downstream of the branch point to destabilize branching-specific factors and release the branch helix from the active site. Here we present, at 3.8 Å resolution, the cryo-electron microscopy structure of a Saccharomyces cerevisiae spliceosome stalled after Prp16-mediated remodelling but before exon ligation. While the U6 snRNA catalytic core remains firmly held in the active site cavity of Prp8 by proteins common to both steps, the branch helix has rotated by 75° compared to the C complex and is stabilized in a new position by Prp17, Cef1 and the reoriented Prp8 RNase H-like domain. This rotation of the branch helix removes the branch adenosine from the catalytic core, creates a space for 3' exon docking, and restructures the pairing of the 5' splice site with the U6 snRNA ACAGAGA region. Slu7 and Prp18, which promote exon ligation, bind together to the Prp8 RNase H-like domain. The ATPase Prp22, bound to Prp8 in place of Prp16, could interact with the 3' exon, suggesting a possible basis for mRNA release after exon ligation. Together with the structure of the C complex, our structure of the C* complex reveals the two major conformations of the spliceosome during the catalytic stages of splicing.

Reviews - 5mq0 mentioned but not cited (4)

  1. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Fica SM, Nagai K. Nat Struct Mol Biol 24 791-799 (2017)
  2. The life of U6 small nuclear RNA, from cradle to grave. Didychuk AL, Butcher SE, Brow DA. RNA 24 437-460 (2018)
  3. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. van der Feltz C, Hoskins AA. Crit Rev Biochem Mol Biol 54 443-465 (2019)
  4. RNAs in the spliceosome: Insight from cryoEM structures. Zhang L, Vielle A, Espinosa S, Zhao R. Wiley Interdiscip Rev RNA 10 e1523 (2019)

Articles - 5mq0 mentioned but not cited (7)

  1. Structure of a spliceosome remodelled for exon ligation. Fica SM, Oubridge C, Galej WP, Wilkinson ME, Bai XC, Newman AJ, Nagai K. Nature 542 377-380 (2017)
  2. De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Kappel K, Liu S, Larsen KP, Skiniotis G, Puglisi EV, Puglisi JD, Zhou ZH, Zhao R, Das R. Nat Methods 15 947-954 (2018)
  3. psiCLIP reveals dynamic RNA binding by DEAH-box helicases before and after exon ligation. Strittmatter LM, Capitanchik C, Newman AJ, Hallegger M, Norman CM, Fica SM, Oubridge C, Luscombe NM, Ule J, Nagai K. Nat Commun 12 1488 (2021)
  4. Saccharomyces cerevisiae Ecm2 Modulates the Catalytic Steps of pre-mRNA Splicing. van der Feltz C, Nikolai B, Schneider C, Paulson JC, Fu X, Hoskins AA. RNA rna.077727.120 (2021)
  5. 3D-PP: A Tool for Discovering Conserved Three-Dimensional Protein Patterns. Valdés-Jiménez A, Larriba-Pey JL, Núñez-Vivanco G, Reyes-Parada M. Int J Mol Sci 20 E3174 (2019)
  6. An Allosteric Network for Spliceosome Activation Revealed by High-Throughput Suppressor Analysis in Saccharomyces cerevisiae. Brow DA. Genetics 212 111-124 (2019)
  7. Network theory reveals principles of spliceosome structure and dynamics. Kaur H, van der Feltz C, Sun Y, Hoskins AA. Structure 30 190-200.e2 (2022)


Reviews citing this publication (27)

  1. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Shi Y. Nat Rev Mol Cell Biol 18 655-670 (2017)
  2. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Herzel L, Ottoz DSM, Alpert T, Neugebauer KM. Nat Rev Mol Cell Biol 18 637-650 (2017)
  3. Cryo-EM in drug discovery: achievements, limitations and prospects. Renaud JP, Chari A, Ciferri C, Liu WT, Rémigy HW, Stark H, Wiesmann C. Nat Rev Drug Discov 17 471-492 (2018)
  4. Structural Insights into Nuclear pre-mRNA Splicing in Higher Eukaryotes. Kastner B, Will CL, Stark H, Lührmann R. Cold Spring Harb Perspect Biol 11 a032417 (2019)
  5. Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome. Yan C, Wan R, Shi Y. Cold Spring Harb Perspect Biol 11 a032409 (2019)
  6. The Spliceosome: A Protein-Directed Metalloribozyme. Shi Y. J Mol Biol 429 2640-2653 (2017)
  7. Structural Basis of Nuclear pre-mRNA Splicing: Lessons from Yeast. Plaschka C, Newman AJ, Nagai K. Cold Spring Harb Perspect Biol 11 a032391 (2019)
  8. Splicing Factor Mutations in Myelodysplasias: Insights from Spliceosome Structures. Jenkins JL, Kielkopf CL. Trends Genet 33 336-348 (2017)
  9. DEAH-Box RNA Helicases in Pre-mRNA Splicing. De Bortoli F, Espinosa S, Zhao R. Trends Biochem Sci 46 225-238 (2021)
  10. A Challenging Pie to Splice: Drugging the Spliceosome. León B, Kashyap MK, Chan WC, Krug KA, Castro JE, La Clair JJ, Burkart MD. Angew Chem Int Ed Engl 56 12052-12063 (2017)
  11. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Arribere JA, Kuroyanagi H, Hundley HA. Genetics 215 531-568 (2020)
  12. Cryo-EM Studies of Pre-mRNA Splicing: From Sample Preparation to Model Visualization. Wilkinson ME, Lin PC, Plaschka C, Nagai K. Annu Rev Biophys 47 175-199 (2018)
  13. An RNA-centric historical narrative around the Protein Data Bank. Westhof E, Leontis NB. J Biol Chem 296 100555 (2021)
  14. Insights from structures of cancer-relevant pre-mRNA splicing factors. Kielkopf CL. Curr Opin Genet Dev 48 57-66 (2018)
  15. Recent advances and current trends in cryo-electron microscopy. Guaita M, Watters SC, Loerch S. Curr Opin Struct Biol 77 102484 (2022)
  16. Genetics and biochemistry remain essential in the structural era of the spliceosome. Mayerle M, Guthrie C. Methods 125 3-9 (2017)
  17. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. Neuhaus D. Prog Nucl Magn Reson Spectrosc 130-131 62-105 (2022)
  18. Retroelement origins of pre-mRNA splicing. Haack DB, Toor N. Wiley Interdiscip Rev RNA 11 e1589 (2020)
  19. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD. RNA 29 531-550 (2023)
  20. Structural studies of the endogenous spliceosome - The supraspliceosome. Sperling J, Sperling R. Methods 125 70-83 (2017)
  21. Structural basis for activation of an archaeal ribonuclease P RNA by protein cofactors. Kimura M. Biosci Biotechnol Biochem 81 1670-1680 (2017)
  22. Structure determination of group II introns. Wiryaman T, Toor N. Methods 125 10-15 (2017)
  23. RNA and Proteins: Mutual Respect. Hall KB. F1000Res 6 345 (2017)
  24. The SF3b Complex is an Integral Component of the Spliceosome and Targeted by Natural Product-Based Inhibitors. Larsen NA. Subcell Biochem 96 409-432 (2021)
  25. New windows into retroviral RNA structures. Jayaraman D, Kenyon JC. Retrovirology 15 11 (2018)
  26. SLU7: A New Hub of Gene Expression Regulation-From Epigenetics to Protein Stability in Health and Disease. Gárate-Rascón M, Recalde M, Rojo C, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. Int J Mol Sci 23 13411 (2022)
  27. A Quality Control Mechanism of Splice Site Selection Abrogated under Stress and in Cancer. Arafat M, Sperling R. Cancers (Basel) 14 1750 (2022)

Articles citing this publication (56)

  1. Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for Activation. Bertram K, Agafonov DE, Dybkov O, Haselbach D, Leelaram MN, Will CL, Urlaub H, Kastner B, Lührmann R, Stark H. Cell 170 701-713.e11 (2017)
  2. An Atomic Structure of the Human Spliceosome. Zhang X, Yan C, Hang J, Finci LI, Lei J, Shi Y. Cell 169 918-929.e14 (2017)
  3. Structure of a pre-catalytic spliceosome. Plaschka C, Lin PC, Nagai K. Nature 546 617-621 (2017)
  4. Structure of the human activated spliceosome in three conformational states. Zhang X, Yan C, Zhan X, Li L, Lei J, Shi Y. Cell Res 28 307-322 (2018)
  5. Structure of a human catalytic step I spliceosome. Zhan X, Zhan X, Yan C, Zhang X, Zhang X, Lei J, Shi Y. Science 359 537-545 (2018)
  6. Postcatalytic spliceosome structure reveals mechanism of 3'-splice site selection. Wilkinson ME, Fica SM, Galej WP, Norman CM, Newman AJ, Nagai K. Science 358 1283-1288 (2017)
  7. A human postcatalytic spliceosome structure reveals essential roles of metazoan factors for exon ligation. Fica SM, Oubridge C, Wilkinson ME, Newman AJ, Nagai K. Science 363 710-714 (2019)
  8. Structural basis for DEAH-helicase activation by G-patch proteins. Studer MK, Ivanović L, Weber ME, Marti S, Jonas S. Proc Natl Acad Sci U S A 117 7159-7170 (2020)
  9. All-atom simulations disentangle the functional dynamics underlying gene maturation in the intron lariat spliceosome. Casalino L, Palermo G, Spinello A, Rothlisberger U, Magistrato A. Proc Natl Acad Sci U S A 115 6584-6589 (2018)
  10. Structural basis for RNA translocation by DEAH-box ATPases. Hamann F, Enders M, Ficner R. Nucleic Acids Res 47 4349-4362 (2019)
  11. Structural basis for conformational equilibrium of the catalytic spliceosome. Wilkinson ME, Fica SM, Galej WP, Nagai K. Mol Cell 81 1439-1452.e9 (2021)
  12. Identification of a noncanonical RNA binding domain in the U2 snRNP protein SF3A1. Martelly W, Fellows B, Senior K, Marlowe T, Sharma S. RNA 25 1509-1521 (2019)
  13. Structural basis for the second step of group II intron splicing. Chan RT, Peters JK, Robart AR, Wiryaman T, Rajashankar KR, Toor N. Nat Commun 9 4676 (2018)
  14. Pathogenic Abnormal Splicing Due to Intronic Deletions that Induce Biophysical Space Constraint for Spliceosome Assembly. Bryen SJ, Joshi H, Evesson FJ, Girard C, Ghaoui R, Waddell LB, Testa AC, Cummings B, Arbuckle S, Graf N, Webster R, MacArthur DG, Laing NG, Davis MR, Lührmann R, Cooper ST. Am J Hum Genet 105 573-587 (2019)
  15. Decrypting the Information Exchange Pathways across the Spliceosome Machinery. Saltalamacchia A, Casalino L, Borišek J, Batista VS, Rivalta I, Magistrato A. J Am Chem Soc 142 8403-8411 (2020)
  16. Phytophthora effector PSR1 hijacks the host pre-mRNA splicing machinery to modulate small RNA biogenesis and plant immunity. Gui X, Zhang P, Wang D, Ding Z, Wu X, Shi J, Shen QH, Xu YZ, Ma W, Qiao Y. Plant Cell 34 3443-3459 (2022)
  17. Structural toggle in the RNaseH domain of Prp8 helps balance splicing fidelity and catalytic efficiency. Mayerle M, Raghavan M, Ledoux S, Price A, Stepankiw N, Hadjivassiliou H, Moehle EA, Mendoza SD, Pleiss JA, Guthrie C, Abelson J. Proc Natl Acad Sci U S A 114 4739-4744 (2017)
  18. Termination of pre-mRNA splicing requires that the ATPase and RNA unwindase Prp43p acts on the catalytic snRNA U6. Toroney R, Nielsen KH, Staley JP. Genes Dev 33 1555-1574 (2019)
  19. Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM-ULM interaction. Talkish J, Igel H, Hunter O, Horner SW, Jeffery NN, Leach JR, Jenkins JL, Kielkopf CL, Ares M. RNA 25 1020-1037 (2019)
  20. Yeast Prp2 liberates the 5' splice site and the branch site adenosine for catalysis of pre-mRNA splicing. Bao P, Höbartner C, Hartmuth K, Lührmann R. RNA 23 1770-1779 (2017)
  21. Dynamic protein-RNA interactions in mediating splicing catalysis. Chung CS, Tseng CK, Lai YH, Wang HF, Newman AJ, Cheng SC. Nucleic Acids Res 47 899-910 (2019)
  22. Development of an in vitro pre-mRNA splicing assay using plant nuclear extract. Albaqami M, Reddy ASN. Plant Methods 14 1 (2018)
  23. Synergistic roles for human U1 snRNA stem-loops in pre-mRNA splicing. Martelly W, Fellows B, Kang P, Vashisht A, Wohlschlegel JA, Sharma S. RNA Biol 18 2576-2593 (2021)
  24. Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. MacRae AJ, Mayerle M, Hrabeta-Robinson E, Chalkley RJ, Guthrie C, Burlingame AL, Jurica MS. RNA 24 769-777 (2018)
  25. A broad analysis of splicing regulation in yeast using a large library of synthetic introns. Schirman D, Yakhini Z, Pilpel Y, Dahan O. PLoS Genet 17 e1009805 (2021)
  26. Intrinsically Disordered Protein Ntr2 Modulates the Spliceosomal RNA Helicase Brr2. Wollenhaupt J, Henning LM, Sticht J, Becke C, Freund C, Santos KF, Wahl MC. Biophys J 114 788-799 (2018)
  27. Maternal methionine supplementation during gestation alters alternative splicing and DNA methylation in bovine skeletal muscle. Liu L, Amorín R, Moriel P, DiLorenzo N, Lancaster PA, Peñagaricano F. BMC Genomics 22 780 (2021)
  28. Prp8 impacts cryptic but not alternative splicing frequency. Mayerle M, Yitiz S, Soulette C, Rogel LE, Ramirez A, Ragle JM, Katzman S, Guthrie C, Zahler AM. Proc Natl Acad Sci U S A 116 2193-2199 (2019)
  29. Crystal structure of U2 snRNP SF3b components: Hsh49p in complex with Cus1p-binding domain. van Roon AM, Oubridge C, Obayashi E, Sposito B, Newman AJ, Séraphin B, Nagai K. RNA 23 968-981 (2017)
  30. Inositol hexakisphosphate is required for Integrator function. Lin MH, Jensen MK, Elrod ND, Huang KL, Welle KA, Wagner EJ, Tong L. Nat Commun 13 5742 (2022)
  31. Multiple RNA-RNA tertiary interactions are dispensable for formation of a functional U2/U6 RNA catalytic core in the spliceosome. Bao P, Boon KL, Will CL, Hartmuth K, Lührmann R. Nucleic Acids Res 46 12126-12138 (2018)
  32. Blocking late stages of splicing quickly limits pre-spliceosome assembly in vivo. Mendoza-Ochoa GI, Barrass JD, Maudlin IE, Beggs JD. RNA Biol 16 1775-1784 (2019)
  33. Nineteen complex-related factor Prp45 is required for the early stages of cotranscriptional spliceosome assembly. Hálová M, Gahura O, Převorovský M, Cit Z, Novotný M, Valentová A, Abrhámová K, Půta F, Folk P. RNA 23 1512-1524 (2017)
  34. Regulation of 3' splice site selection after step 1 of splicing by spliceosomal C* proteins. Dybkov O, Preußner M, El Ayoubi L, Feng VY, Harnisch C, Merz K, Leupold P, Yudichev P, Agafonov DE, Will CL, Girard C, Dienemann C, Urlaub H, Kastner B, Heyd F, Lührmann R. Sci Adv 9 eadf1785 (2023)
  35. A close-up look at the spliceosome, at last. Abelson J. Proc Natl Acad Sci U S A 114 4288-4293 (2017)
  36. Structural insights into intron catalysis and dynamics during splicing. Xu L, Liu T, Chung K, Pyle AM. Nature 624 682-688 (2023)
  37. The conserved AU dinucleotide at the 5' end of nascent U1 snRNA is optimized for the interaction with nuclear cap-binding-complex. Yeh CS, Chang SL, Chen JH, Wang HK, Chou YC, Wang CH, Huang SH, Larson A, Pleiss JA, Chang WH, Chang TH. Nucleic Acids Res 45 9679-9693 (2017)
  38. Regulation of the DEAH/RHA helicase Prp43 by the G-patch factor Pfa1. Enders M, Ficner R, Adio S. Proc Natl Acad Sci U S A 119 e2203567119 (2022)
  39. The Arabidopsis cyclophilin CYP18-1 facilitates PRP18 dephosphorylation and the splicing of introns retained under heat stress. Jo SH, Park HJ, Lee A, Jung H, Park JM, Kwon SY, Kim HS, Lee HJ, Kim YS, Jung C, Cho HS. Plant Cell 34 2383-2403 (2022)
  40. U5 snRNA Interactions With Exons Ensure Splicing Precision. Artemyeva-Isman OV, Porter ACG. Front Genet 12 676971 (2021)
  41. Auxiliary domains of the HrpB bacterial DExH-box helicase shape its RNA preferences. Hausmann S, Geiser J, Vadas O, Ducret V, Perron K, Valentini M. RNA Biol 17 637-650 (2020)
  42. Intron lariat spliceosomes convert lariats to true circles: implications for intron transposition. Ares M, Igel H, Katzman S, Donohue JP. Genes Dev 38 322-335 (2024)
  43. Splicing of branchpoint-distant exons is promoted by Cactin, Tls1 and the ubiquitin-fold-activated Sde2. Anil AT, Choudhary K, Pandian R, Gupta P, Thakran P, Singh A, Sharma M, Mishra SK. Nucleic Acids Res 50 10000-10014 (2022)
  44. Structural basis of branching during RNA splicing. Haack DB, Rudolfs B, Zhang C, Lyumkis D, Toor N. Nat Struct Mol Biol 31 179-189 (2024)
  45. An integrative platform for detection of RNA 2'-O-methylation reveals its broad distribution on mRNA. Tang Y, Wu Y, Wang S, Lu X, Gu X, Li Y, Yang F, Xu R, Wang T, Jiao Z, Wu Y, Liu L, Chen JQ, Wang Q, Chen Q. Cell Rep Methods 4 100721 (2024)
  46. Biochemical and genetic evidence supports Fyv6 as a second-step splicing factor in Saccharomyces cerevisiae. Lipinski KA, Senn KA, Zeps NJ, Hoskins AA. RNA 29 1792-1802 (2023)
  47. Dynamic Supraspliceosomes Are Assembled on Different Transcripts Regardless of Their Intron Number and Splicing State. Sebbag-Sznajder N, Brody Y, Hochberg-Laufer H, Shav-Tal Y, Sperling J, Sperling R. Front Genet 11 409 (2020)
  48. Radical probing of spliceosome assembly. Grewal CS, Kent OA, MacMillan AM. Methods 125 16-24 (2017)
  49. Structural and functional investigation of the human snRNP assembly factor AAR2 in complex with the RNase H-like domain of PRPF8. Preussner M, Santos KF, Alles J, Heroven C, Heyd F, Wahl MC, Weber G. Acta Crystallogr D Struct Biol 78 1373-1383 (2022)
  50. An ATP-independent role for Prp16 in promoting aberrant splicing. Chung CS, Wai HL, Kao CY, Cheng SC. Nucleic Acids Res 51 10815-10828 (2023)
  51. Splicing factor Prp18p promotes genome-wide fidelity of consensus 3'-splice sites. Roy KR, Gabunilas J, Neutel D, Ai M, Yeh Z, Samson J, Lyu G, Chanfreau GF. Nucleic Acids Res 51 12428-12442 (2023)
  52. Topology of the U12-U6atac snRNA Complex of the Minor Spliceosome and Binding by NTC-Related Protein RBM22. Ciavarella J, Perea W, Greenbaum NL. ACS Omega 5 23549-23558 (2020)
  53. A two-step probing method to compare lysine accessibility across macromolecular complex conformations. MacRae AJ, Coltri P, Hrabeta-Robinson E, Chalkley RJ, Burlingame AL, Jurica MS. RNA Biol 16 1346-1354 (2019)
  54. Characterization of Cwc2, U6 snRNA, and Prp8 interactions destabilized by Prp16 ATPase at the transition between the first and second steps of splicing. Meissner J, Eysmont K, Matylla-Kulińska K, Konarska MM. RNA 30 1199-1212 (2024)
  55. Missplicing suppressor alleles of Arabidopsis PRE-MRNA PROCESSING FACTOR 8 increase splicing fidelity by reducing the use of novel splice sites. Cabezas-Fuster A, Micol-Ponce R, Fontcuberta-Cervera S, Ponce MR. Nucleic Acids Res 50 5513-5527 (2022)
  56. U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors. Urabe VK, Stevers M, Ghosh AK, Jurica MS. PLoS One 16 e0258551 (2021)


Related citations provided by authors (4)

  1. Structural basis of pre-mRNA splicing.. Hang J, Wan R, Yan C, Shi Y Science 349 1191-8 (2015)
  2. The architecture of the spliceosomal U4/U6.U5 tri-snRNP.. Nguyen TH, Galej WP, Bai XC, Savva CG, Newman AJ, Scheres SH, Nagai K Nature 523 47-52 (2015)
  3. Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution.. Nguyen THD, Galej WP, Bai XC, Oubridge C, Newman AJ, Scheres SHW, Nagai K Nature 530 298-302 (2016)
  4. Cryo-EM structure of the spliceosome immediately after branching.. Galej WP, Wilkinson ME, Fica SM, Oubridge C, Newman AJ, Nagai K Nature 537 197-201 (2016)