5olr Citations

Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides.

Abstract

The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show that each PUL orchestrates the metabolism of specific pectin molecules, recruiting enzymes from two previously unknown glycoside hydrolase families. The apparatus that depolymerizes the backbone of rhamnogalacturonan-I is particularly complex. This system contains several glycoside hydrolases that trim the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms.

Articles - 5olr mentioned but not cited (1)

  1. Structural and Biochemical Analysis Reveals Catalytic Mechanism of Fucoidan Lyase from Flavobacterium sp. SA-0082. Wang J, Liu Z, Pan X, Wang N, Li L, Du Y, Li J, Li M. Mar Drugs 20 533 (2022)


Reviews citing this publication (26)

  1. Biochemistry of complex glycan depolymerisation by the human gut microbiota. Ndeh D, Gilbert HJ. FEMS Microbiol Rev 42 146-164 (2018)
  2. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Microbiol Mol Biol Rev 82 e00029-18 (2018)
  3. Whole Fruits and Fruit Fiber Emerging Health Effects. Dreher ML. Nutrients 10 E1833 (2018)
  4. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Wardman JF, Bains RK, Rahfeld P, Withers SG. Nat Rev Microbiol 20 542-556 (2022)
  5. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A. J Ind Microbiol Biotechnol 47 623-657 (2020)
  6. Not All Fibers Are Born Equal; Variable Response to Dietary Fiber Subtypes in IBD. Armstrong H, Mander I, Zhang Z, Armstrong D, Wine E. Front Pediatr 8 620189 (2020)
  7. Plant Glycan Metabolism by Bifidobacteria. Kelly SM, Munoz-Munoz J, van Sinderen D. Front Microbiol 12 609418 (2021)
  8. Intestinal mucus and their glycans: A habitat for thriving microbiota. Luis AS, Hansson GC. Cell Host Microbe 31 1087-1100 (2023)
  9. Effect of Intermittent Fasting on Reproductive Hormone Levels in Females and Males: A Review of Human Trials. Cienfuegos S, Corapi S, Gabel K, Ezpeleta M, Kalam F, Lin S, Pavlou V, Varady KA. Nutrients 14 2343 (2022)
  10. If you eat it, or secrete it, they will grow: the expanding list of nutrients utilized by human gut bacteria. Glowacki RWP, Martens EC. J Bacteriol JB.00481-20 (2020)
  11. Cross-feeding in the gut microbiome: Ecology and mechanisms. Culp EJ, Goodman AL. Cell Host Microbe 31 485-499 (2023)
  12. PUL-Mediated Plant Cell Wall Polysaccharide Utilization in the Gut Bacteroidetes. Hao Z, Wang X, Yang H, Tu T, Zhang J, Luo H, Huang H, Su X. Int J Mol Sci 22 3077 (2021)
  13. Molecular Insights Into O-Linked Glycan Utilization by Gut Microbes. González-Morelo KJ, Vega-Sagardía M, Garrido D. Front Microbiol 11 591568 (2020)
  14. Combined whole cell wall analysis and streamlined in silico carbohydrate-active enzyme discovery to improve biocatalytic conversion of agricultural crop residues. Tingley JP, Low KE, Xing X, Abbott DW. Biotechnol Biofuels 14 16 (2021)
  15. β-glucans: a potential source for maintaining gut microbiota and the immune system. Singh RP, Bhardwaj A. Front Nutr 10 1143682 (2023)
  16. Modulating the Gut Microbiota of Humans by Dietary Intervention with Plant Glycans. Tannock GW. Appl Environ Microbiol 87 e02757-20 (2021)
  17. Regulation of dietary fiber on intestinal microorganisms and its effects on animal health. Han X, Ma Y, Ding S, Fang J, Liu G. Anim Nutr 14 356-369 (2023)
  18. Effects of Lycium barbarum Polysaccharides on Immunity and Metabolic Syndrome Associated with the Modulation of Gut Microbiota: A Review. Cao C, Wang Z, Gong G, Huang W, Huang L, Song S, Zhu B. Foods 11 3177 (2022)
  19. Establishing genetic manipulation for novel strains of human gut bacteria. Sheridan PO, Odat MA, Scott KP. Microbiome Res Rep 2 1 (2023)
  20. Exploring Bacterial Attributes That Underpin Symbiont Life in the Monogastric Gut. Tannock GW. Appl Environ Microbiol 88 e0112822 (2022)
  21. Mucin glycans and their degradation by gut microbiota. Yamaguchi M, Yamamoto K. Glycoconj J 40 493-512 (2023)
  22. Pullulanase: unleashing the power of enzyme with a promising future in the food industry. Naik B, Kumar V, Goyal SK, Dutt Tripathi A, Mishra S, Joakim Saris PE, Kumar A, Rizwanuddin S, Kumar V, Rustagi S. Front Bioeng Biotechnol 11 1139611 (2023)
  23. Alternatives to antibiotics in pig production: looking through the lens of immunophysiology. Liu HY, Zhu C, Zhu M, Yuan L, Li S, Gu F, Hu P, Chen S, Cai D. Stress Biol 4 1 (2024)
  24. Current models in bacterial hemicellulase-encoding gene regulation. Novak JK, Gardner JG. Appl Microbiol Biotechnol 108 39 (2024)
  25. Systems and synthetic biology-driven engineering of live bacterial therapeutics. Kim K, Kang M, Cho BK. Front Bioeng Biotechnol 11 1267378 (2023)
  26. Understanding the gut microbiota by considering human evolution: a story of fire, cereals, cooking, molecular ingenuity, and functional cooperation. Tannock GW. Microbiol Mol Biol Rev 88 e0012722 (2024)

Articles citing this publication (97)

  1. The carbohydrate-active enzyme database: functions and literature. Drula E, Garron ML, Dogan S, Lombard V, Henrissat B, Terrapon N. Nucleic Acids Res 50 D571-D577 (2022)
  2. Interspecies Competition Impacts Targeted Manipulation of Human Gut Bacteria by Fiber-Derived Glycans. Patnode ML, Beller ZW, Han ND, Cheng J, Peters SL, Terrapon N, Henrissat B, Le Gall S, Saulnier L, Hayashi DK, Meynier A, Vinoy S, Giannone RJ, Hettich RL, Gordon JI. Cell 179 59-73.e13 (2019)
  3. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Wang DD, Nguyen LH, Li Y, Yan Y, Ma W, Rinott E, Ivey KL, Shai I, Willett WC, Hu FB, Rimm EB, Stampfer MJ, Chan AT, Huttenhower C. Nat Med 27 333-343 (2021)
  4. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Tramontano M, Andrejev S, Pruteanu M, Klünemann M, Kuhn M, Galardini M, Jouhten P, Zelezniak A, Zeller G, Bork P, Typas A, Patil KR. Nat Microbiol 3 514-522 (2018)
  5. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. Liu X, Tong X, Zou Y, Lin X, Zhao H, Tian L, Jie Z, Wang Q, Zhang Z, Lu H, Xiao L, Qiu X, Zi J, Wang R, Xu X, Yang H, Wang J, Zong Y, Liu W, Hou Y, Zhu S, Jia H, Zhang T. Nat Genet 54 52-61 (2022)
  6. Discovery of novel carbohydrate-active enzymes through the rational exploration of the protein sequences space. Helbert W, Poulet L, Drouillard S, Mathieu S, Loiodice M, Couturier M, Lombard V, Terrapon N, Turchetto J, Vincentelli R, Henrissat B. Proc Natl Acad Sci U S A 116 6063-6068 (2019)
  7. Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments. Liu H, Shiver AL, Price MN, Carlson HK, Trotter VV, Chen Y, Escalante V, Ray J, Hern KE, Petzold CJ, Turnbaugh PJ, Huang KC, Arkin AP, Deutschbauer AM. Cell Rep 34 108789 (2021)
  8. Surface Exposure and Packing of Lipoproteins into Outer Membrane Vesicles Are Coupled Processes in Bacteroides. Valguarnera E, Scott NE, Azimzadeh P, Feldman MF. mSphere 3 e00559-18 (2018)
  9. A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Cartmell A, Muñoz-Muñoz J, Briggs JA, Ndeh DA, Lowe EC, Baslé A, Terrapon N, Stott K, Heunis T, Gray J, Yu L, Dupree P, Fernandes PZ, Shah S, Williams SJ, Labourel A, Trost M, Henrissat B, Gilbert HJ. Nat Microbiol 3 1314-1326 (2018)
  10. Genomic insights from Monoglobus pectinilyticus: a pectin-degrading specialist bacterium in the human colon. Kim CC, Lunken GR, Kelly WJ, Patchett ML, Jordens Z, Tannock GW, Sims IM, Bell TJ, Hedderley D, Henrissat B, Rosendale DI. ISME J 13 1437-1456 (2019)
  11. Metagenomic analysis of gut microbiota in non-treated plaque psoriasis patients stratified by disease severity: development of a new Psoriasis-Microbiome Index. Dei-Cas I, Giliberto F, Luce L, Dopazo H, Penas-Steinhardt A. Sci Rep 10 12754 (2020)
  12. Metabolism of multiple glycosaminoglycans by Bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus. Ndeh D, Baslé A, Strahl H, Yates EA, McClurgg UL, Henrissat B, Terrapon N, Cartmell A. Nat Commun 11 646 (2020)
  13. Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut Bacteroides. Déjean G, Tamura K, Cabrera A, Jain N, Pudlo NA, Pereira G, Viborg AH, Van Petegem F, Martens EC, Brumer H. mBio 11 e00095-20 (2020)
  14. Degradation of complex arabinoxylans by human colonic Bacteroidetes. Pereira GV, Abdel-Hamid AM, Dutta S, D'Alessandro-Gabazza CN, Wefers D, Farris JA, Bajaj S, Wawrzak Z, Atomi H, Mackie RI, Gabazza EC, Shukla D, Koropatkin NM, Cann I. Nat Commun 12 459 (2021)
  15. Metagenome-assembled genomes and gene catalog from the chicken gut microbiome aid in deciphering antibiotic resistomes. Feng Y, Wang Y, Zhu B, Gao GF, Guo Y, Hu Y. Commun Biol 4 1305 (2021)
  16. A Ribose-Scavenging System Confers Colonization Fitness on the Human Gut Symbiont Bacteroides thetaiotaomicron in a Diet-Specific Manner. Glowacki RWP, Pudlo NA, Tuncil Y, Luis AS, Sajjakulnukit P, Terekhov AI, Lyssiotis CA, Hamaker BR, Martens EC. Cell Host Microbe 27 79-92.e9 (2020)
  17. Polysaccharide utilization loci in Bacteroides determine population fitness and community-level interactions. Feng J, Qian Y, Zhou Z, Ertmer S, Vivas EI, Lan F, Hamilton JJ, Rey FE, Anantharaman K, Venturelli OS. Cell Host Microbe 30 200-215.e12 (2022)
  18. Surface glycan-binding proteins are essential for cereal beta-glucan utilization by the human gut symbiont Bacteroides ovatus. Tamura K, Foley MH, Gardill BR, Dejean G, Schnizlein M, Bahr CME, Louise Creagh A, van Petegem F, Koropatkin NM, Brumer H. Cell Mol Life Sci 76 4319-4340 (2019)
  19. Diet-derived galacturonic acid regulates virulence and intestinal colonization in enterohaemorrhagic Escherichia coli and Citrobacter rodentium. Jimenez AG, Ellermann M, Abbott W, Sperandio V. Nat Microbiol 5 368-378 (2020)
  20. Succession of Bifidobacterium longum Strains in Response to a Changing Early Life Nutritional Environment Reveals Dietary Substrate Adaptations. Kujawska M, La Rosa SL, Roger LC, Pope PB, Hoyles L, McCartney AL, Hall LJ. iScience 23 101368 (2020)
  21. The Development of the Gut Microbiota and Short-Chain Fatty Acids of Layer Chickens in Different Growth Periods. Sun B, Hou L, Yang Y. Front Vet Sci 8 666535 (2021)
  22. Cultivable, Host-Specific Bacteroidetes Symbionts Exhibit Diverse Polysaccharolytic Strategies. Vera-Ponce de León A, Jahnes BC, Duan J, Camuy-Vélez LA, Sabree ZL. Appl Environ Microbiol 86 e00091-20 (2020)
  23. Host glycan utilization within the Bacteroidetes Sus-like paradigm. Brown HA, Koropatkin NM. Glycobiology 31 697-706 (2021)
  24. Structural basis of mammalian high-mannose N-glycan processing by human gut Bacteroides. Trastoy B, Du JJ, Klontz EH, Li C, Cifuente JO, Wang LX, Sundberg EJ, Guerin ME. Nat Commun 11 899 (2020)
  25. Intestinal IgA Regulates Expression of a Fructan Polysaccharide Utilization Locus in Colonizing Gut Commensal Bacteroides thetaiotaomicron. Joglekar P, Ding H, Canales-Herrerias P, Pasricha PJ, Sonnenburg JL, Peterson DA. mBio 10 e02324-19 (2019)
  26. Metabolism of a hybrid algal galactan by members of the human gut microbiome. Robb CS, Hobbs JK, Pluvinage B, Reintjes G, Klassen L, Monteith S, Giljan G, Amundsen C, Vickers C, Hettle AG, Hills R, Nitin, Xing X, Montina T, Zandberg WF, Abbott DW, Boraston AB. Nat Chem Biol 18 501-510 (2022)
  27. Poplar carbohydrate-active enzymes: whole-genome annotation and functional analyses based on RNA expression data. Kumar V, Hainaut M, Delhomme N, Mannapperuma C, Immerzeel P, Street NR, Henrissat B, Mellerowicz EJ. Plant J 99 589-609 (2019)
  28. Prebiotic effects of yeast mannan, which selectively promotes Bacteroides thetaiotaomicron and Bacteroides ovatus in a human colonic microbiota model. Oba S, Sunagawa T, Tanihiro R, Awashima K, Sugiyama H, Odani T, Nakamura Y, Kondo A, Sasaki D, Sasaki K. Sci Rep 10 17351 (2020)
  29. Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut Bacteroidetes to Polysaccharide Side Chain Diversity. Déjean G, Tauzin AS, Bennett SW, Creagh AL, Brumer H. Appl Environ Microbiol 85 e01491-19 (2019)
  30. Focused Metabolism of β-Glucans by the Soil Bacteroidetes Species Chitinophaga pinensis. McKee LS, Martínez-Abad A, Ruthes AC, Vilaplana F, Brumer H. Appl Environ Microbiol 85 e02231-18 (2019)
  31. Strain-level functional variation in the human gut microbiota based on bacterial binding to artificial food particles. Patnode ML, Guruge JL, Castillo JJ, Couture GA, Lombard V, Terrapon N, Henrissat B, Lebrilla CB, Gordon JI. Cell Host Microbe 29 664-673.e5 (2021)
  32. A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota. Aakko J, Pietilä S, Toivonen R, Rokka A, Mokkala K, Laitinen K, Elo L, Hänninen A. Sci Rep 10 12411 (2020)
  33. A versatile genetic toolbox for Prevotella copri enables studying polysaccharide utilization systems. Li J, Gálvez EJC, Amend L, Almási É, Iljazovic A, Lesker TR, Bielecka AA, Schorr EM, Strowig T. EMBO J 40 e108287 (2021)
  34. Microbial liberation of N-methylserotonin from orange fiber in gnotobiotic mice and humans. Han ND, Cheng J, Delannoy-Bruno O, Webber D, Terrapon N, Henrissat B, Rodionov DA, Arzamasov AA, Osterman AL, Hayashi DK, Meynier A, Vinoy S, Desai C, Marion S, Barratt MJ, Heath AC, Gordon JI. Cell 185 2495-2509.e11 (2022)
  35. Biochemical Reconstruction of a Metabolic Pathway from a Marine Bacterium Reveals Its Mechanism of Pectin Depolymerization. Hobbs JK, Hettle AG, Vickers C, Boraston AB. Appl Environ Microbiol 85 e02114-18 (2019)
  36. Distinct protein architectures mediate species-specific beta-glucan binding and metabolism in the human gut microbiota. Tamura K, Dejean G, Van Petegem F, Brumer H. J Biol Chem 296 100415 (2021)
  37. Metatranscriptomic analysis of colonic microbiota's functional response to different dietary fibers in growing pigs. Xu J, Xu R, Jia M, Su Y, Zhu W. Anim Microbiome 3 45 (2021)
  38. Combinatorial Glycomic Analyses to Direct CAZyme Discovery for the Tailored Degradation of Canola Meal Non-Starch Dietary Polysaccharides. Low KE, Xing X, Moote PE, Inglis GD, Venketachalam S, Hahn MG, King ML, Tétard-Jones CY, Jones DR, Willats WGT, Slominski BA, Abbott DW. Microorganisms 8 E1888 (2020)
  39. Structural and functional aspects of mannuronic acid-specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus. Stender EGP, Dybdahl Andersen C, Fredslund F, Holck J, Solberg A, Teze D, Peters GHJ, Christensen BE, Christensen BE, Aachmann FL, Welner DH, Svensson B. J Biol Chem 294 17915-17930 (2019)
  40. A Novel PL9 Pectate Lyase from Paenibacillus polymyxa KF-1: Cloning, Expression, and Its Application in Pectin Degradation. Yuan Y, Zhang XY, Zhao Y, Zhang H, Zhou YF, Gao J. Int J Mol Sci 20 E3060 (2019)
  41. Consistent Prebiotic Effects of Carrot RG-I on the Gut Microbiota of Four Human Adult Donors in the SHIME® Model despite Baseline Individual Variability. Van den Abbeele P, Duysburgh C, Cleenwerck I, Albers R, Marzorati M, Mercenier A. Microorganisms 9 2142 (2021)
  42. Human gut bacteria tailor extracellular vesicle cargo for the breakdown of diet- and host-derived glycans. Sartorio MG, Pardue EJ, Scott NE, Feldman MF. Proc Natl Acad Sci U S A 120 e2306314120 (2023)
  43. Sharing a β-Glucan Meal: Transcriptomic Eavesdropping on a Bacteroides ovatus-Subdoligranulum variabile-Hungatella hathewayi Consortium. Centanni M, Sims IM, Bell TJ, Biswas A, Tannock GW. Appl Environ Microbiol 86 e01651-20 (2020)
  44. Pretreatment of Rapeseed Meal Increases Its Recalcitrant Fiber Fermentation and Alters the Microbial Community in an in vitro Model of Swine Large Intestine. Long C, Venema K. Front Microbiol 11 588264 (2020)
  45. A Pectin-Rich, Baobab Fruit Pulp Powder Exerts Prebiotic Potential on the Human Gut Microbiome In Vitro. Foltz M, Zahradnik AC, Van den Abbeele P, Ghyselinck J, Marzorati M. Microorganisms 9 1981 (2021)
  46. Cellulase and Alkaline Treatment Improve Intestinal Microbial Degradation of Recalcitrant Fibers of Rapeseed Meal in Pigs. Long C, Rösch C, de Vries S, Schols H, Venema K. J Agric Food Chem 68 11011-11025 (2020)
  47. Activity-based protein profiling identifies alternating activation of enzymes involved in the bifidobacterium shunt pathway or mucin degradation in the gut microbiome response to soluble dietary fiber. Killinger BJ, Whidbey C, Sadler NC, DeLeon AJ, Munoz N, Kim YM, Wright AT. NPJ Biofilms Microbiomes 8 60 (2022)
  48. Crystal structure of β-L-arabinobiosidase belonging to glycoside hydrolase family 121. Saito K, Viborg AH, Sakamoto S, Arakawa T, Yamada C, Fujita K, Fushinobu S. PLoS One 15 e0231513 (2020)
  49. Engineering dual-glycan responsive expression systems for tunable production of heterologous proteins in Bacteroides thetaiotaomicron. Jones DR, Smith MB, McLean R, Grondin JM, Amundsen CR, Inglis GD, Selinger B, Abbott DW. Sci Rep 9 17400 (2019)
  50. Microbiota functional activity biosensors for characterizing nutrient metabolism in vivo. Wesener DA, Beller ZW, Peters SL, Rajabi A, Dimartino G, Giannone RJ, Hettich RL, Gordon JI. Elife 10 e64478 (2021)
  51. Paenibacillus amylolyticus 27C64 has a diverse set of carbohydrate-active enzymes and complete pectin deconstruction system. Keggi C, Doran-Peterson J. J Ind Microbiol Biotechnol 46 1-11 (2019)
  52. Biochemical characterisation of four rhamnosidases from thermophilic bacteria of the genera Thermotoga, Caldicellulosiruptor and Thermoclostridium. Baudrexl M, Schwarz WH, Zverlov VV, Zverlov VV, Liebl W. Sci Rep 9 15924 (2019)
  53. Carbohydrate complexity limits microbial growth and reduces the sensitivity of human gut communities to perturbations. Ostrem Loss E, Thompson J, Cheung PLK, Qian Y, Venturelli OS. Nat Ecol Evol 7 127-142 (2023)
  54. Crosstalk Between Polygonatum kingianum, the miRNA, and Gut Microbiota in the Regulation of Lipid Metabolism. Dong J, Gu W, Yang X, Zeng L, Wang X, Mu J, Wang Y, Li F, Yang M, Yu J. Front Pharmacol 12 740528 (2021)
  55. Letter Crystal structure of exo-rhamnogalacturonan lyase from Penicillium chrysogenum as a member of polysaccharide lyase family 26. Kunishige Y, Iwai M, Nakazawa M, Ueda M, Tada T, Nishimura S, Sakamoto T. FEBS Lett 592 1378-1388 (2018)
  56. Effects of Adding Eubiotic Lignocellulose on the Growth Performance, Laying Performance, Gut Microbiota, and Short-Chain Fatty Acids of Two Breeds of Hens. Sun B, Hou L, Yang Y. Front Vet Sci 8 668003 (2021)
  57. Genetic drift and host-adaptive features likely underlie cladogenesis of insect-associated Lachnospiraceae. Vera-Ponce de Leon A, Schneider MG, Jahnes BC, Sadowski V, Camuy-Vélez LA, Duan J, Sabree ZL. Genome Biol Evol evac086 (2022)
  58. Identification of D-arabinan-degrading enzymes in mycobacteria. Al-Jourani O, Benedict ST, Ross J, Layton AJ, van der Peet P, Marando VM, Bailey NP, Heunis T, Manion J, Mensitieri F, Franklin A, Abellon-Ruiz J, Oram SL, Parsons L, Cartmell A, Wright GSA, Baslé A, Trost M, Henrissat B, Munoz-Munoz J, Hirt RP, Kiessling LL, Lovering AL, Williams SJ, Lowe EC, Moynihan PJ. Nat Commun 14 2233 (2023)
  59. Identification of a protective Bacteroides strain of alcoholic liver disease and its synergistic effect with pectin. Wang Q, Li Y, Lv L, Jiang H, Yan R, Wang S, Lu Y, Wu Z, Shen J, Jiang S, Lv J, Li S, Zhuge A, Li L. Appl Microbiol Biotechnol 106 3735-3749 (2022)
  60. A low abundance of genus Bacteroides in gut microbiota is negatively correlated with blood phenylalanine levels in Uygur patients with phenylketonuria. Su Y, Shadike Q, Wang M, Jiang H, Liu W, Liu J, Tuerdi R, Zhou W, Li L. Transl Pediatr 10 2521-2532 (2021)
  61. Comparative analysis of prebiotic effects of four oligosaccharides using in vitro gut model: digestibility, microbiome, and metabolome changes. Cheon S, Kim G, Bae JH, Lee DH, Seong H, Kim DH, Han JS, Lim SY, Han NS. FEMS Microbiol Ecol 99 fiad002 (2023)
  62. Ecological Adaptation and Succession of Human Fecal Microbial Communities in an Automated In Vitro Fermentation System. Gnanasekaran T, Assis Geraldo J, Ahrenkiel DW, Alvarez-Silva C, Saenz C, Khan A, Hanteer O, Gunalan V, Trost K, Moritz T, Arumugam M. mSystems 6 e0023221 (2021)
  63. Activity-based protein profiling reveals dynamic substrate-specific cellulase secretion by saprotrophic basidiomycetes. McGregor NGS, de Boer C, Santos M, Haon M, Navarro D, Schroder S, Berrin JG, Overkleeft HS, Davies GJ. Biotechnol Biofuels Bioprod 15 6 (2022)
  64. BoGH13ASus from Bacteroides ovatus represents a novel α-amylase used for  Bacteroides starch breakdown in the human gut. Brown HA, DeVeaux AL, Juliano BR, Photenhauer AL, Boulinguiez M, Bornschein RE, Wawrzak Z, Ruotolo BT, Terrapon N, Koropatkin NM. Cell Mol Life Sci 80 232 (2023)
  65. Identification of Glycoside Transporters From the Human Gut Microbiome. Wang Z, Tauzin AS, Laville E, Potocki-Veronese G. Front Microbiol 13 816462 (2022)
  66. Let them eat fruit. Mackie RI, Cann I. Nat Microbiol 3 127-129 (2018)
  67. Metabolic and enzymatic elucidation of cooperative degradation of red seaweed agarose by two human gut bacteria. Yun EJ, Yu S, Park NJ, Cho Y, Han NR, Jin YS, Kim KH. Sci Rep 11 13955 (2021)
  68. Modulation of the Gut Microbiota Structure and Function by Two Structurally Different Lemon Pectins. Firrman J, Mahalak K, Bobokalonov J, Liu L, Lee JJ, Bittinger K, Mattei LM, Gadaingan R, Narrowe AB, Lemons JMS. Foods 11 3877 (2022)
  69. Stepwise Evolution of a Klebsiella pneumoniae Clone within a Host Leading to Increased Multidrug Resistance. Yoshino M, Aihara M, Gotoh Y, Akimoto M, Tatsuhara W, Kiyosuke M, Matsushima Y, Uchiumi T, Hayashi T, Kang D. mSphere 6 e0073421 (2021)
  70. The Secretomes of Aspergillus japonicus and Aspergillus terreus Supplement the Rovabio® Enzyme Cocktail for the Degradation of Soybean Meal for Animal Feed. Grandmontagne D, Navarro D, Neugnot-Roux V, Ladevèze S, Berrin JG. J Fungi (Basel) 7 278 (2021)
  71. Ascertaining the biochemical function of an essential pectin methylesterase in the gut microbe Bacteroides thetaiotaomicron. Duan CJ, Baslé A, Liberato MV, Gray J, Nepogodiev SA, Field RA, Juge N, Ndeh D. J Biol Chem 295 18625-18637 (2020)
  72. Bacteroidota polysaccharide utilization system for branched dextran exopolysaccharides from lactic acid bacteria. Nakamura S, Kurata R, Tonozuka T, Funane K, Park EY, Miyazaki T. J Biol Chem 299 104885 (2023)
  73. Biochemical Characterization of a Pectate Lyase AnPL9 from Aspergillus nidulans. Suzuki H, Morishima T, Handa A, Tsukagoshi H, Kato M, Shimizu M. Appl Biochem Biotechnol 194 5627-5643 (2022)
  74. Characterization of Two Novel Rumen-Derived Exo-Polygalacturonases: Catalysis and Molecular Simulations. Deng Q, Sun X, Gao D, Wang Y, Liu Y, Li N, Wang Z, Liu M, Wang J, Wang Q. Microorganisms 11 760 (2023)
  75. Cloning and Characterization of a Novel Alginate Lyase from Paenibacillus sp. LJ-23. Wang M, Chen L, Lou Z, Yuan X, Pan G, Ren X, Wang P. Mar Drugs 20 66 (2022)
  76. Discovery of novel secretome CAZymes from Penicillium sclerotigenum by bioinformatics and explorative proteomics analyses during sweet potato pectin digestion. Barrett K, Zhao H, Hao P, Bacic A, Lange L, Holck J, Meyer AS. Front Bioeng Biotechnol 10 950259 (2022)
  77. Effect of Agaricus bisporus Polysaccharides on Human Gut Microbiota during In Vitro Fermentation: An Integrative Analysis of Microbiome and Metabolome. Duan H, Yu Q, Ni Y, Li J, Fan L. Foods 12 859 (2023)
  78. Effects of adding eubiotic lignocellulose on the performance, the gut microbiota, and short-chain fatty acids of layer chickens. Sun B, Hou L, Yang Y. Braz J Microbiol 53 2205-2213 (2022)
  79. Fungal β-glucan-facilitated cross-feeding activities between Bacteroides and Bifidobacterium species. Fernandez-Julia P, Black GW, Cheung W, Van Sinderen D, Munoz-Munoz J. Commun Biol 6 576 (2023)
  80. Gut Bacteria have a novel sweet tooth: ribose sensing and scavenging from fiber. Karri V, Hirschi KD. Gut Microbes 11 1483-1485 (2020)
  81. Inducible CRISPR-targeted "knockdown" of human gut Bacteroides in gnotobiotic mice discloses glycan utilization strategies. Beller ZW, Wesener DA, Seebeck TR, Guruge JL, Byrne AE, Henrissat S, Terrapon N, Henrissat B, Rodionov DA, Osterman AL, Suarez C, Bacalzo NP, Chen Y, Couture G, Lebrilla CB, Zhang Z, Eastlund ER, McCann CH, Davis GD, Gordon JI. Proc Natl Acad Sci U S A 120 e2311422120 (2023)
  82. Multiple TonB homologs are important for carbohydrate utilization by Bacteroides thetaiotaomicron. Pollet RM, Foley MH, Kumar SS, Elmore A, Jabara NT, Venkatesh S, Vasconcelos Pereira G, Martens EC, Koropatkin NM. J Bacteriol 205 e0021823 (2023)
  83. Nutrient niche specificity for glycosaminoglycans is reflected in polysaccharide utilization locus architecture of gut Bacteroides species. Overbeeke A, Hausmann B, Nikolov G, Pereira FC, Herbold CW, Berry D. Front Microbiol 13 1033355 (2022)
  84. Single-molecule dynamics of surface lipoproteins in bacteroides indicate similarities and cooperativity. Geffroy L, Brown HA, DeVeaux AL, Koropatkin NM, Biteen JS. Biophys J 121 4644-4655 (2022)
  85. Structural and Biochemical Characterization of a Nonbinding SusD-Like Protein Involved in Xylooligosaccharide Utilization by an Uncultured Human Gut Bacteroides Strain. Tauzin AS, Wang Z, Cioci G, Li X, Labourel A, Machado B, Lippens G, Potocki-Veronese G. mSphere 7 e0024422 (2022)
  86. Tutorial: Microbiome studies in drug metabolism. Dodd D, Cann I. Clin Transl Sci 15 2812-2837 (2022)
  87. Altered intestinal microbiota enhances adenoid hypertrophy by disrupting the immune balance. Liu W, Jiang H, Liu X, Zheng Y, Liu Y, Pan F, Yu F, Li Z, Gu M, Du Q, Li X, Zhang H, Han D. Front Immunol 14 1277351 (2023)
  88. Bifidobacterial GH146 β-L-arabinofuranosidase for the removal of β1,3-L-arabinofuranosides on plant glycans. Fujita K, Tsunomachi H, Lixia P, Maruyama S, Miyake M, Dakeshita A, Kitahara K, Tanaka K, Ito Y, Ishiwata A, Fushinobu S. Appl Microbiol Biotechnol 108 199 (2024)
  89. Biochemical Characterization of Two Rhamnogalacturonan Lyases From Bacteroides ovatus ATCC 8483 With Preference for RG-I Substrates. Wang W, Wang Y, Yi H, Liu Y, Zhang G, Zhang L, Mayo KH, Yuan Y, Zhou Y. Front Microbiol 12 799875 (2021)
  90. Carbohydrate esterases involved in deacetylation of food components by the human gut microbiota. La Rosa SL, Lindstad LJ, Westereng B. Essays Biochem 67 443-454 (2023)
  91. Characterization of a new family of 6-sulfo-N-acetylglucosaminidases. Bains RK, Nasseri SA, Liu F, Wardman JF, Rahfeld P, Withers SG. J Biol Chem 299 105214 (2023)
  92. Editorial Editorial: Edible mushrooms and the gut microbiota. Liu W, Gao B, Yu F, Wu X, Li L. Front Nutr 10 1349429 (2023)
  93. Function and Structure of Lacticaseibacillus casei GH35 β-Galactosidase LBCZ_0230 with High Hydrolytic Activity to Lacto-N-biose I and Galacto-N-biose. Saburi W, Ota T, Kato K, Tagami T, Yamashita K, Yao M, Mori H. J Appl Glycosci (1999) 70 43-52 (2023)
  94. Gut microbial CAZymes markers for depression. Xie P, Zhou X, Li Y, Wu J, Zhang H, Huang Y, Tan X, Wen L, Olasunkanmi OI, Zhou J, Sun Z, Liu M, Zhang G, Wang Y, Xie P, Yang J, Zheng P. Transl Psychiatry 14 135 (2024)
  95. Polysaccharide utilization loci from Bacteroidota encode CE15 enzymes with possible roles in cleaving pectin-lignin bonds. Seveso A, Mazurkewich S, Banerjee S, Poulsen J-CN, Lo Leggio L, Larsbrink J. Appl Environ Microbiol 90 e0176823 (2024)
  96. Structural and functional characterization of the novel endo-α(1,4)-fucoidanase Mef1 from the marine bacterium Muricauda eckloniae. Mikkelsen MD, Tran VHN, Meier S, Nguyen TT, Holck J, Cao HTT, Van TTT, Thinh PD, Meyer AS, Morth JP. Acta Crystallogr D Struct Biol 79 1026-1043 (2023)
  97. The claim of primacy of human gut Bacteroides ovatus in dietary cellobiose degradation. Li M, Wang Y, Guo C, Wang S, Zheng L, Bu Y, Ding K. Gut Microbes 15 2227434 (2023)