5pio Citations

A multi-crystal method for extracting obscured crystallographic states from conventionally uninterpretable electron density.

OpenAccess logo Nat Commun 8 15123 (2017)
Related entries: 5pb7, 5pb8, 5pb9, 5pba, 5pbb, 5pbc, 5pbd, 5pbe, 5pbf, 5pbg, 5pbh, 5pbi, 5pbj, 5pbk, 5pbl, 5pbm, 5pbn, 5pbo, 5pbp, 5pbq, 5pbr, 5pbs, 5pbt, 5pbu, 5pbv, 5pbw, 5pbx, 5pby, 5pbz, 5pc0, 5pc1, 5pc2, 5pc3, 5pc4, 5pc5, 5pc6, 5pc7, 5pc8, 5pc9, 5pca, 5pcb, 5pcc, 5pcd, 5pce, 5pcf, 5pcg, 5pch, 5pci, 5pcj, 5pck, 5pcl, 5pcm, 5pcn, 5pco, 5pcp, 5pcq, 5pcr, 5pcs, 5pct, 5pcu, 5pcv, 5pcw, 5pcx, 5pcz, 5pd0, 5pd1, 5pd2, 5pd3, 5pd4, 5pd5, 5pd6, 5pd7, 5pd8, 5pd9, 5pda, 5pdb, 5pdc, 5pdd, 5pde, 5pdf, 5pdg, 5pdh, 5pdi, 5pdj, 5pdk, 5pdl, 5pdm, 5pdn, 5pdo, 5pdp, 5pdq, 5pdr, 5pds, 5pdt, 5pdu, 5pdv, 5pdw, 5pdx, 5pdy, 5pdz, 5pe0, 5pe1, 5pe2, 5pe3, 5pe4, 5pe5, 5pe6, 5pe7, 5pe8, 5pe9, 5pea, 5peb, 5pec, 5ped, 5pee, 5pef, 5peg, 5peh, 5pei, 5pej, 5pek, 5pel, 5pem, 5pen, 5peo, 5peq, 5per, 5pes, 5pet, 5peu, 5pev, 5pew, 5pex, 5pey, 5pez, 5pf0, 5pf1, 5pf2, 5pf3, 5pf4, 5pf5, 5pf6, 5pf7, 5pf8, 5pf9, 5pfa, 5pfb, 5pfc, 5pfd, 5pfe, 5pff, 5pfg, 5pfh, 5pfi, 5pfj, 5pfl, 5pfm, 5pfn, 5pfo, 5pfp, 5pfq, 5pfr, 5pfs, 5pft, 5pfu, 5pfv, 5pfw, 5pfx, 5pfy, 5pfz, 5pg0, 5pg1, 5pg2, 5pg3, 5pg4, 5pg5, 5pg6, 5pg7, 5pg8, 5pg9, 5pga, 5pgb, 5pgc, 5pgd, 5pge, 5pgf, 5pgg, 5pgh, 5pgi, 5pgj, 5pgk, 5pgl, 5pgn, 5pgo, 5pgp, 5pgq, 5pgr, 5pgs, 5pgt, 5ph0, 5ph1, 5ph2, 5ph3, 5ph4, 5ph5, 5ph6, 5ph7, 5ph8, 5ph9, 5pha, 5phb, 5phc, 5phd, 5phe, 5phf, 5phg, 5phh, 5phi, 5phj, 5phk, 5phl, 5phm, 5phn, 5pho, 5php, 5phq, 5phr, 5phs, 5pht, 5phu, 5phv, 5phw, 5phx, 5phy, 5phz, 5pi0, 5pi1, 5pi2, 5pi3, 5pi4, 5pi5, 5pi6, 5pi7, 5pi8, 5pi9, 5pia, 5pib, 5pic, 5pid, 5pie, 5pif, 5pig, 5pih, 5pii, 5pij, 5pik, 5pil, 5pim, 5pin, 5pip, 5piq, 5pir, 5pis, 5pit, 5piu, 5piv, 5piw, 5pix, 5piy, 5piz, 5pj0, 5pj1, 5pj2, 5pj3, 5pj4, 5pj5, 5pj6, 5pj7, 5pj8, 5pj9, 5pja, 5pjb, 5pjc, 5pjd, 5pje, 5pjf, 5pjg, 5pjh, 5pji, 5pjj, 5pjk, 5pjl, 5pjm, 5pjn, 5pjo, 5pjp, 5pjq, 5pjr, 5pjs, 5pjt, 5pju, 5pjv, 5pjw, 5pjx, 5pjy, 5pjz, 5pk0, 5pk1, 5pk2, 5pk3, 5pk4, 5pk5, 5pk6, 5pk7, 5pk8, 5pk9, 5pka, 5pkb, 5pkc, 5pkd, 5pke, 5pkf, 5pkg, 5pkh, 5pki, 5pkj, 5pkk, 5pkl, 5pkm, 5pkn, 5pko, 5pkp, 5pkq, 5pkr, 5pks, 5pkt, 5pku, 5pkv, 5pkw, 5pkx, 5pky, 5pkz, 5pl0, 5pl1, 5pl2, 5pl3, 5pl4, 5pl5, 5pl6, 5pl7, 5pl8, 5pl9, 5pla, 5plb, 5plc, 5pld, 5ple, 5plf, 5plg, 5plh, 5pli, 5plj, 5plk, 5pll, 5plm, 5pln, 5plo, 5plp, 5plq, 5plr, 5pls, 5plt, 5plu, 5plv, 5plw, 5plx, 5ply, 5plz, 5pm0, 5pm1, 5pm2, 5pm3, 5pm4, 5pm5, 5pm6, 5pm7, 5pm8, 5pm9, 5pma, 5pmb, 5pmc, 5pmd, 5pme, 5pmf, 5pmg, 5pmh, 5pmi, 5pmj, 5pmk, 5pml, 5pmm, 5pmn, 5pmo, 5pmp, 5pmq, 5pmr, 5pms, 5pmt, 5pmu, 5pmv, 5pmw, 5pmx, 5pmy, 5pmz, 5pn0, 5pn1, 5pn2, 5pn3, 5pn4, 5pn5, 5pn6, 5pn7, 5pn8, 5pn9, 5pna, 5pnb, 5pnc, 5pnd, 5pne, 5pnf, 5png, 5pnh, 5pni, 5pnj, 5pnk, 5pnl, 5pnm, 5pnn, 5pno, 5pnp, 5pnq, 5pnr, 5pns, 5pnu, 5pnv, 5pnw, 5pnx, 5pny, 5pnz, 5po0, 5po1, 5po2, 5po3, 5po4, 5po5, 5po6, 5po7, 5po8, 5po9, 5poa, 5pob, 5poc, 5pod, 5poe, 5pof, 5pog, 5poh, 5poi, 5poj, 5pok, 5pol, 5pom, 5pon, 5poo, 5pop, 5poq, 5por, 5pos, 5pot, 5pou, 5pov, 5pow, 5pox, 5poy, 5poz, 5pp0, 5pp1, 5pp2, 5pp3, 5pp4, 5pp5, 5pp6, 5pp7, 5pp8, 5pp9, 5ppa, 5ppb, 5ppc, 5ppd, 5ppe, 5ppf, 5ppg, 5pph, 5ppi, 5ppj, 5ppk, 5ppl, 5ppm, 5ppn, 5ppo, 5ppp, 5ppq, 5ppr, 5pps, 5ppt, 5ppu, 5ppv, 5ppw, 5ppx, 5ppy, 5ppz, 5pq0, 5pq1, 5pq2, 5pq3, 5pq4, 5pq5, 5pq6, 5pq7, 5pq8, 5pq9, 5pqa, 5pqb, 5pqc, 5pqd, 5pqe, 5pqf, 5pqg, 5pqh, 5pqi, 5pqj, 5pqk, 5pql, 5pqm, 5pqn, 5pqo, 5pqp, 5pqq, 5pqr, 5pqs, 5pqt, 5pqu, 5pqv, 5pqw, 5pqx, 5pqy, 5pqz, 5pr0, 5pr1, 5pr2, 5pr4, 5pr5, 5pr6, 5pr7, 5pr8, 5pr9, 5pra, 5prb, 5prd, 5pre, 5prf, 5prg, 5prh, 5pri, 5prj, 5prk, 5prl, 5prm, 5pro, 5prp, 5prq, 5prr, 5prs, 5prt, 5pru, 5prv, 5prw, 5prx, 5pry, 5prz, 5ps0, 5ps1, 5ps2, 5ps3, 5ps4, 5ps5, 5ps6, 5ps7, 5ps8, 5ps9, 5psa, 5psb, 5psc, 5psd, 5pse, 5psf, 5psg, 5psh, 5psi, 5psj, 5psk, 5psl, 5psm, 5psn, 5pso, 5psp, 5psq, 5psr, 5pss, 5pst, 5psu, 5psv, 5psw, 5psx, 5psy, 5psz, 5pt0, 5pt1, 5pt2, 5pt3, 5pt4, 5pt5, 5pt6, 5pt7, 5pt8, 5pt9, 5pta, 5ptb, 5ptc, 5pte, 5ptf, 5ptg, 5pth, 5ptj, 5ptk, 5ptl, 5ptm, 5ptn, 5pto, 5ptq, 5ptr, 5pts, 5ptt, 5ptu, 5ptv, 5ptw, 5ptx, 5pty, 5ptz, 5pu0, 5pu1, 5pu2, 5pu3, 5pu4, 5pu5, 5pu6, 5pu7, 5pu8, 5pu9, 5pua, 5pub, 5puc, 5pud, 5pue, 5puf, 5pug, 5puh, 5pui, 5puj, 5puk, 5pul, 5pum, 5pun, 5puo, 5pup, 5puq, 5pur, 5pus, 5put, 5puu, 5puv, 5puw, 5pux, 5puy, 5puz, 5pv0, 5pv1, 5pv2, 5pv3, 5pv4, 5pv5, 5pv6, 5pv7, 5pv8, 5pv9, 5pva, 5pvb, 5pvc, 5pvd, 5pve, 5pvf, 5pvg, 5pvh, 5pvi, 5pvj, 5pvk, 5pvl, 5pvm, 5pvn, 5pvo, 5pvp, 5pvq, 5pvr, 5pvs, 5pvt, 5pvu, 5pvv, 5pvw, 5pvx, 5pvy, 5pvz, 5pw0, 5pw1, 5pw2, 5pw3, 5pw4, 5pw5, 5pw6, 5pw7, 5pw8, 5pw9, 5pwa, 5pwb, 5pwc, 5pwd, 5pwe, 5pwf, 5pwg, 5pwh, 5pwi, 5pwj, 5pwk, 5pwl, 5pwm, 5pwn, 5pwo, 5pwp, 5pwq, 5pwr, 5pws, 5pwt, 5pwu, 5pwv, 5pww, 5pwx, 5pwy, 5pwz, 5px0, 5px1, 5px2, 5px3, 5px4, 5px5, 5px6, 5px7, 5px8, 5px9, 5pxa, 5pxb, 5pxc, 5pxd, 5pxe, 5pxf, 5pxg, 5pxh, 5pxi, 5pxj, 5pxk, 5pxl, 5pxm, 5pxn, 5pxo, 5pxp, 5pxq, 5pxr, 5pxs, 5pxt, 5pxu, 5pxv, 5pxw, 5pxx, 5pxy, 5pxz, 5py0, 5py1, 5py2, 5py3, 5py4, 5py5, 5py6, 5py7, 5py8, 5py9, 5pya, 5pyb, 5pyc, 5pyd, 5pye, 5pyf, 5pyg, 5pyh, 5pyi, 5pyj, 5pyk, 5pyl, 5pym, 5pyn, 5pyo, 5pyp, 5pyq, 5pyr, 5pys, 5pyt, 5pyu, 5pyv, 5pyw, 5pyx, 5pyy, 5pyz, 5pz0, 5pz1, 5pz2, 5pz3, 5pz4, 5pz5, 5pz6, 5pz7, 5pz8, 5pz9, 5pza, 5pzb, 5pzc, 5pzd, 5pze, 5pzf, 5pzg, 5pzh, 5pzi, 5pzj

Cited: 104 times
EuropePMC logo PMID: 28436492

Abstract

In macromolecular crystallography, the rigorous detection of changed states (for example, ligand binding) is difficult unless signal is strong. Ambiguous ('weak' or 'noisy') density is experimentally common, since molecular states are generally only fractionally present in the crystal. Existing methodologies focus on generating maximally accurate maps whereby minor states become discernible; in practice, such map interpretation is disappointingly subjective, time-consuming and methodologically unsound. Here we report the PanDDA method, which automatically reveals clear electron density for the changed state-even from inaccurate maps-by subtracting a proportion of the confounding 'ground state'; changed states are objectively identified from statistical analysis of density distributions. The method is completely general, implying new best practice for all changed-state studies, including the routine collection of multiple ground-state crystals. More generally, these results demonstrate: the incompleteness of atomic models; that single data sets contain insufficient information to model them fully; and that accuracy requires further map-deconvolution approaches.

Reviews citing this publication (16)

  1. WD40 repeat domain proteins: a novel target class? Schapira M, Tyers M, Torrent M, Arrowsmith CH. Nat Rev Drug Discov 16 773-786 (2017)
  2. Current perspectives in fragment-based lead discovery (FBLD). Lamoree B, Hubbard RE. Essays Biochem 61 453-464 (2017)
  3. Protein X-ray Crystallography and Drug Discovery. Maveyraud L, Mourey L. Molecules 25 E1030 (2020)
  4. Concepts and Core Principles of Fragment-Based Drug Design. Kirsch P, Hartman AM, Hirsch AKH, Empting M. Molecules 24 E4309 (2019)
  5. Where is crystallography going? Grimes JM, Hall DR, Ashton AW, Evans G, Owen RL, Wagner A, McAuley KE, von Delft F, Orville AM, Sorensen T, Walsh MA, Ginn HM, Stuart DI. Acta Crystallogr D Struct Biol 74 152-166 (2018)
  6. A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process. Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Lima GMA, Rosa HVD, Pereira HD, Zeri ACM, Nascimento AFZ, Freire MCLC, Fearon D, Douangamath A, von Delft F, Oliva G, Godoy AS. J Mol Biol 433 167118 (2021)
  7. Role of Computational Methods in Going beyond X-ray Crystallography to Explore Protein Structure and Dynamics. Srivastava A, Nagai T, Srivastava A, Miyashita O, Tama F. Int J Mol Sci 19 E3401 (2018)
  8. Structural Biology and the Design of New Therapeutics: From HIV and Cancer to Mycobacterial Infections: A Paper Dedicated to John Kendrew. Thomas SE, Mendes V, Kim SY, Malhotra S, Ochoa-Montaño B, Blaszczyk M, Blundell TL. J Mol Biol 429 2677-2693 (2017)
  9. Best practices for time-resolved serial synchrotron crystallography. Schulz EC, Yorke BA, Pearson AR, Mehrabi P. Acta Crystallogr D Struct Biol 78 14-29 (2022)
  10. New developments in crystallography: exploring its technology, methods and scope in the molecular biosciences. Helliwell JR. Biosci Rep 37 BSR20170204 (2017)
  11. Repurposing an Antiviral Drug against SARS-CoV-2 Main Protease. Sarkar A, Mandal K. Angew Chem Int Ed Engl 60 23492-23494 (2021)
  12. Advances in methods for atomic resolution macromolecular structure determination. Thompson MC, Yeates TO, Rodriguez JA. F1000Res 9 F1000 Faculty Rev-667 (2020)
  13. The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery. Bradley AR, Echalier A, Fairhead M, Strain-Damerell C, Brennan P, Bullock AN, Burgess-Brown NA, Carpenter EP, Gileadi O, Marsden BD, Lee WH, Yue W, Bountra C, von Delft F. Essays Biochem 61 495-503 (2017)
  14. Using Structure-guided Fragment-Based Drug Discovery to Target Pseudomonas aeruginosa Infections in Cystic Fibrosis. Arif SM, Floto RA, Blundell TL. Front Mol Biosci 9 857000 (2022)
  15. Medicinal chemistry strategies towards the development of non-covalent SARS-CoV-2 Mpro inhibitors. Song L, Gao S, Ye B, Yang M, Cheng Y, Kang D, Yi F, Sun JP, Menéndez-Arias L, Neyts J, Liu X, Zhan P. Acta Pharm Sin B 14 87-109 (2024)
  16. SARS-CoV-2 proteins structural studies using synchrotron radiation. Kosenko M, Onkhonova G, Susloparov I, Ryzhikov A. Biophys Rev 15 1185-1194 (2023)

Articles citing this publication (88)

  1. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Douangamath A, Fearon D, Gehrtz P, Krojer T, Lukacik P, Owen CD, Resnick E, Strain-Damerell C, Aimon A, Ábrányi-Balogh P, Brandão-Neto J, Carbery A, Davison G, Dias A, Downes TD, Dunnett L, Fairhead M, Firth JD, Jones SP, Keeley A, Keserü GM, Klein HF, Martin MP, Noble MEM, O'Brien P, Powell A, Reddi RN, Skyner R, Snee M, Waring MJ, Wild C, London N, von Delft F, Walsh MA. Nat Commun 11 5047 (2020)
  2. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Günther S, Reinke PYA, Fernández-García Y, Lieske J, Lane TJ, Ginn HM, Koua FHM, Ehrt C, Ewert W, Oberthuer D, Yefanov O, Meier S, Lorenzen K, Krichel B, Kopicki JD, Gelisio L, Brehm W, Dunkel I, Seychell B, Gieseler H, Norton-Baker B, Escudero-Pérez B, Domaracky M, Saouane S, Tolstikova A, White TA, Hänle A, Groessler M, Fleckenstein H, Trost F, Galchenkova M, Gevorkov Y, Li C, Awel S, Peck A, Barthelmess M, Schlünzen F, Lourdu Xavier P, Werner N, Andaleeb H, Ullah N, Falke S, Srinivasan V, França BA, Schwinzer M, Brognaro H, Rogers C, Melo D, Zaitseva-Doyle JJ, Knoska J, Peña-Murillo GE, Mashhour AR, Hennicke V, Fischer P, Hakanpää J, Meyer J, Gribbon P, Ellinger B, Kuzikov M, Wolf M, Beccari AR, Bourenkov G, von Stetten D, Pompidor G, Bento I, Panneerselvam S, Karpics I, Schneider TR, Garcia-Alai MM, Niebling S, Günther C, Schmidt C, Schubert R, Han H, Boger J, Monteiro DCF, Zhang L, Sun X, Pletzer-Zelgert J, Wollenhaupt J, Feiler CG, Weiss MS, Schulz EC, Mehrabi P, Karničar K, Usenik A, Loboda J, Tidow H, Chari A, Hilgenfeld R, Uetrecht C, Cox R, Zaliani A, Beck T, Rarey M, Günther S, Turk D, Hinrichs W, Chapman HN, Pearson AR, Betzel C, Meents A. Science 372 642-646 (2021)
  3. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Yeh TL, Leissing TM, Abboud MI, Thinnes CC, Atasoylu O, Holt-Martyn JP, Zhang D, Tumber A, Lippl K, Lohans CT, Leung IKH, Morcrette H, Clifton IJ, Claridge TDW, Kawamura A, Flashman E, Lu X, Ratcliffe PJ, Chowdhury R, Pugh CW, Schofield CJ. Chem Sci 8 7651-7668 (2017)
  4. Rapid Covalent-Probe Discovery by Electrophile-Fragment Screening. Resnick E, Bradley A, Gan J, Douangamath A, Krojer T, Sethi R, Geurink PP, Aimon A, Amitai G, Bellini D, Bennett J, Fairhead M, Fedorov O, Gabizon R, Gan J, Guo J, Plotnikov A, Reznik N, Ruda GF, Díaz-Sáez L, Straub VM, Straub VM, Szommer T, Velupillai S, Zaidman D, Zhang Y, Coker AR, Dowson CG, Barr HM, Wang C, Huber KVM, Brennan PE, Ovaa H, von Delft F, London N. J Am Chem Soc 141 8951-8968 (2019)
  5. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Newman JA, Douangamath A, Yadzani S, Yosaatmadja Y, Aimon A, Brandão-Neto J, Dunnett L, Gorrie-Stone T, Skyner R, Fearon D, Schapira M, von Delft F, Gileadi O. Nat Commun 12 4848 (2021)
  6. Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. Schuller M, Correy GJ, Gahbauer S, Fearon D, Wu T, Díaz RE, Young ID, Carvalho Martins L, Smith DH, Schulze-Gahmen U, Owens TW, Deshpande I, Merz GE, Thwin AC, Biel JT, Peters JK, Moritz M, Herrera N, Kratochvil HT, QCRG Structural Biology Consortium, Aimon A, Bennett JM, Brandao Neto J, Cohen AE, Dias A, Douangamath A, Dunnett L, Fedorov O, Fedorov O, Ferla MP, Fuchs MR, Gorrie-Stone TJ, Holton JM, Johnson MG, Krojer T, Meigs G, Powell AJ, Rack JGM, Rangel VL, Russi S, Skyner RE, Smith CA, Soares AS, Wierman JL, Zhu K, O'Brien P, Jura N, Ashworth A, Irwin JJ, Thompson MC, Gestwicki JE, von Delft F, Shoichet BK, Fraser JS, Ahel I. Sci Adv 7 eabf8711 (2021)
  7. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering. Keedy DA, Hill ZB, Biel JT, Kang E, Rettenmaier TJ, Brandão-Neto J, Pearce NM, von Delft F, Wells JA, Fraser JS. Elife 7 e36307 (2018)
  8. An automatic pipeline for the design of irreversible derivatives identifies a potent SARS-CoV-2 Mpro inhibitor. Zaidman D, Gehrtz P, Filep M, Fearon D, Gabizon R, Douangamath A, Prilusky J, Duberstein S, Cohen G, Owen CD, Resnick E, Strain-Damerell C, Lukacik P, Covid-Moonshot Consortium, Barr H, Walsh MA, von Delft F, London N. Cell Chem Biol 28 1795-1806.e5 (2021)
  9. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo. Gill SC, Lim NM, Grinaway PB, Rustenburg AS, Fass J, Ross GA, Chodera JD, Mobley DL. J Phys Chem B 122 5579-5598 (2018)
  10. Ligand-centered assessment of SARS-CoV-2 drug target models in the Protein Data Bank. Wlodawer A, Dauter Z, Shabalin IG, Gilski M, Brzezinski D, Kowiel M, Minor W, Rupp B, Jaskolski M. FEBS J 287 3703-3718 (2020)
  11. Structure-guided fragment-based drug discovery at the synchrotron: screening binding sites and correlations with hotspot mapping. Thomas SE, Collins P, James RH, Mendes V, Charoensutthivarakul S, Radoux C, Abell C, Coyne AG, Floto RA, von Delft F, Blundell TL. Philos Trans A Math Phys Eng Sci 377 20180422 (2019)
  12. Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 macrodomain of SARS-CoV-2. Gahbauer S, Correy GJ, Schuller M, Ferla MP, Doruk YU, Rachman M, Wu T, Diolaiti M, Wang S, Neitz RJ, Fearon D, Radchenko DS, Moroz YS, Irwin JJ, Renslo AR, Taylor JC, Gestwicki JE, von Delft F, Ashworth A, Ahel I, Shoichet BK, Fraser JS. Proc Natl Acad Sci U S A 120 e2212931120 (2023)
  13. The Integrated Resource for Reproducibility in Macromolecular Crystallography: Experiences of the first four years. Grabowski M, Cymborowski M, Porebski PJ, Osinski T, Shabalin IG, Cooper DR, Minor W. Struct Dyn 6 064301 (2019)
  14. Enhanced validation of small-molecule ligands and carbohydrates in the Protein Data Bank. Feng Z, Westbrook JD, Sala R, Smart OS, Bricogne G, Matsubara M, Yamada I, Tsuchiya S, Aoki-Kinoshita KF, Hoch JC, Kurisu G, Velankar S, Burley SK, Young JY. Structure 29 393-400.e1 (2021)
  15. The CCP4 suite: integrative software for macromolecular crystallography. Agirre J, Atanasova M, Bagdonas H, Ballard CB, Baslé A, Beilsten-Edmands J, Borges RJ, Brown DG, Burgos-Mármol JJ, Berrisford JM, Bond PS, Caballero I, Catapano L, Chojnowski G, Cook AG, Cowtan KD, Croll TI, Debreczeni JÉ, Devenish NE, Dodson EJ, Drevon TR, Emsley P, Evans G, Evans PR, Fando M, Foadi J, Fuentes-Montero L, Garman EF, Gerstel M, Gildea RJ, Hatti K, Hekkelman ML, Heuser P, Hoh SW, Hough MA, Jenkins HT, Jiménez E, Joosten RP, Keegan RM, Keep N, Krissinel EB, Kolenko P, Kovalevskiy O, Lamzin VS, Lawson DM, Lebedev AA, Leslie AGW, Lohkamp B, Long F, Malý M, McCoy AJ, McNicholas SJ, Medina A, Millán C, Murray JW, Murshudov GN, Nicholls RA, Noble MEM, Oeffner R, Pannu NS, Parkhurst JM, Pearce N, Pereira J, Perrakis A, Powell HR, Read RJ, Rigden DJ, Rochira W, Sammito M, Sánchez Rodríguez F, Sheldrick GM, Shelley KL, Simkovic F, Simpkin AJ, Skubak P, Sobolev E, Steiner RA, Stevenson K, Tews I, Thomas JMH, Thorn A, Valls JT, Uski V, Usón I, Vagin A, Velankar S, Vollmar M, Walden H, Waterman D, Wilson KS, Winn MD, Winter G, Wojdyr M, Yamashita K. Acta Crystallogr D Struct Biol 79 449-461 (2023)
  16. qFit 3: Protein and ligand multiconformer modeling for X-ray crystallographic and single-particle cryo-EM density maps. Riley BT, Wankowicz SA, de Oliveira SHP, van Zundert GCP, Hogan DW, Fraser JS, Keedy DA, van den Bedem H. Protein Sci 30 270-285 (2021)
  17. Synthesis and Demonstration of the Biological Relevance of sp3 -rich Scaffolds Distantly Related to Natural Product Frameworks. Foley DJ, Craven PGE, Collins PM, Doveston RG, Aimon A, Talon R, Churcher I, von Delft F, Marsden SP, Nelson A. Chemistry 23 15227-15232 (2017)
  18. Exploring protein hotspots by optimized fragment pharmacophores. Bajusz D, Wade WS, Satała G, Bojarski AJ, Ilaš J, Ebner J, Grebien F, Papp H, Jakab F, Douangamath A, Fearon D, von Delft F, Schuller M, Ahel I, Wakefield A, Vajda S, Gerencsér J, Pallai P, Keserű GM. Nat Commun 12 3201 (2021)
  19. Crystallographic models of SARS-CoV-2 3CLpro: in-depth assessment of structure quality and validation. Jaskolski M, Dauter Z, Shabalin IG, Gilski M, Brzezinski D, Kowiel M, Rupp B, Wlodawer A. IUCrJ 8 238-256 (2021)
  20. Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release. Bailey HJ, Bezerra GA, Marcero JR, Padhi S, Foster WR, Rembeza E, Roy A, Bishop DF, Desnick RJ, Bulusu G, Dailey HA, Yue WW. Nat Commun 11 2813 (2020)
  21. Structural characterization of melatonin as an inhibitor of the Wnt deacylase Notum. Zhao Y, Ren J, Hillier J, Jones M, Lu W, Jones EY. J Pineal Res 68 e12630 (2020)
  22. Covid-19.bioreproducibility.org: A web resource for SARS-CoV-2-related structural models. Brzezinski D, Kowiel M, Cooper DR, Cymborowski M, Grabowski M, Wlodawer A, Dauter Z, Shabalin IG, Gilski M, Rupp B, Jaskolski M, Minor W. Protein Sci 30 115-124 (2021)
  23. Fragment- and structure-based drug discovery for developing therapeutic agents targeting the DNA Damage Response. Wilson DM, Deacon AM, Duncton MAJ, Pellicena P, Georgiadis MM, Yeh AP, Arvai AS, Moiani D, Tainer JA, Das D. Prog Biophys Mol Biol 163 130-142 (2021)
  24. ALIXE: a phase-combination tool for fragment-based molecular replacement. Millán C, Jiménez E, Schuster A, Diederichs K, Usón I. Acta Crystallogr D Struct Biol 76 209-220 (2020)
  25. A shared vision for macromolecular crystallography over the next five years. Förster A, Schulze-Briese C. Struct Dyn 6 064302 (2019)
  26. Combining High-Throughput Synthesis and High-Throughput Protein Crystallography for Accelerated Hit Identification. Sutanto F, Shaabani S, Oerlemans R, Eris D, Patil P, Hadian M, Wang M, Sharpe ME, Groves MR, Dömling A. Angew Chem Int Ed Engl 60 18231-18239 (2021)
  27. RCSB Protein Data bank: Tools for visualizing and understanding biological macromolecules in 3D. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, Chen L, Craig PA, Crichlow GV, Dalenberg K, Duarte JM, Dutta S, Fayazi M, Feng Z, Flatt JW, Ganesan SJ, Ghosh S, Goodsell DS, Green RK, Guranovic V, Henry J, Hudson BP, Khokhriakov I, Lawson CL, Liang Y, Lowe R, Peisach E, Persikova I, Piehl DW, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Vallat B, Voigt M, Webb B, Westbrook JD, Whetstone S, Young JY, Zalevsky A, Zardecki C. Protein Sci 31 e4482 (2022)
  28. Using Fragment-Based Approaches to Discover New Antibiotics. Lamoree B, Hubbard RE. SLAS Discov 23 495-510 (2018)
  29. Construction of a Shape-Diverse Fragment Set: Design, Synthesis and Screen against Aurora-A Kinase. Zhang R, McIntyre PJ, Collins PM, Foley DJ, Arter C, von Delft F, Bayliss R, Warriner S, Nelson A. Chemistry 25 6831-6839 (2019)
  30. Crystal structures and fragment screening of SARS-CoV-2 NSP14 reveal details of exoribonuclease activation and mRNA capping and provide starting points for antiviral drug development. Imprachim N, Yosaatmadja Y, Newman JA. Nucleic Acids Res 51 475-487 (2023)
  31. Identification of fragments binding to SARS-CoV-2 nsp10 reveals ligand-binding sites in conserved interfaces between nsp10 and nsp14/nsp16. Kozielski F, Sele C, Talibov VO, Lou J, Dong D, Wang Q, Shi X, Nyblom M, Rogstam A, Krojer T, Fisher Z, Knecht W. RSC Chem Biol 3 44-55 (2022)
  32. Xtrapol8 enables automatic elucidation of low-occupancy intermediate-states in crystallographic studies. De Zitter E, Coquelle N, Oeser P, Barends TRM, Colletier JP. Commun Biol 5 640 (2022)
  33. Revealing druggable cryptic pockets in the Nsp1 of SARS-CoV-2 and other β-coronaviruses by simulations and crystallography. Borsatto A, Akkad O, Galdadas I, Ma S, Damfo S, Haider S, Kozielski F, Estarellas C, Gervasio FL. Elife 11 e81167 (2022)
  34. Room-temperature crystallography reveals altered binding of small-molecule fragments to PTP1B. Skaist Mehlman T, Biel JT, Azeem SM, Nelson ER, Hossain S, Dunnett L, Paterson NG, Douangamath A, Talon R, Axford D, Orins H, von Delft F, Keedy DA. Elife 12 e84632 (2023)
  35. FragMAXapp: crystallographic fragment-screening data-analysis and project-management system. Lima GMA, Jagudin E, Talibov VO, Benz LS, Marullo C, Barthel T, Wollenhaupt J, Weiss MS, Mueller U. Acta Crystallogr D Struct Biol 77 799-808 (2021)
  36. Simplified quality assessment for small-molecule ligands in the Protein Data Bank. Shao C, Westbrook JD, Lu C, Bhikadiya C, Peisach E, Young JY, Duarte JM, Lowe R, Wang S, Rose Y, Feng Z, Burley SK. Structure 30 252-262.e4 (2022)
  37. Two Ligand-Binding Sites on SARS-CoV-2 Non-Structural Protein 1 Revealed by Fragment-Based X-ray Screening. Ma S, Damfo S, Lou J, Pinotsis N, Bowler MW, Haider S, Kozielski F. Int J Mol Sci 23 12448 (2022)
  38. Antiviral activity of natural phenolic compounds in complex at an allosteric site of SARS-CoV-2 papain-like protease. Srinivasan V, Brognaro H, Prabhu PR, de Souza EE, Günther S, Reinke PYA, Lane TJ, Ginn H, Han H, Ewert W, Sprenger J, Koua FHM, Falke S, Werner N, Andaleeb H, Ullah N, Franca BA, Wang M, Barra ALC, Perbandt M, Schwinzer M, Schmidt C, Brings L, Lorenzen K, Schubert R, Machado RRG, Candido ED, Oliveira DBL, Durigon EL, Niebling S, Garcia AS, Yefanov O, Lieske J, Gelisio L, Domaracky M, Middendorf P, Groessler M, Trost F, Galchenkova M, Mashhour AR, Saouane S, Hakanpää J, Wolf M, Alai MG, Turk D, Pearson AR, Chapman HN, Hinrichs W, Wrenger C, Meents A, Betzel C. Commun Biol 5 805 (2022)
  39. Crystal structure of the catalytic D2 domain of the AAA+ ATPase p97 reveals a putative helical split-washer-type mechanism for substrate unfolding. Stach L, Morgan RM, Makhlouf L, Douangamath A, von Delft F, Zhang X, Freemont PS. FEBS Lett 594 933-943 (2020)
  40. Demonstration of the utility of DOS-derived fragment libraries for rapid hit derivatisation in a multidirectional fashion. Kidd SL, Fowler E, Reinhardt T, Compton T, Mateu N, Newman H, Bellini D, Talon R, McLoughlin J, Krojer T, Aimon A, Bradley A, Fairhead M, Brear P, Díaz-Sáez L, McAuley K, Sore HF, Madin A, O'Donovan DH, Huber KVM, Hyvönen M, von Delft F, Dowson CG, Spring DR. Chem Sci 11 10792-10801 (2020)
  41. Detecting anomalies in X-ray diffraction images using convolutional neural networks. Czyzewski A, Krawiec F, Brzezinski D, Porebski PJ, Minor W. Expert Syst Appl 174 114740 (2021)
  42. Development of Inhibitors of SAICAR Synthetase (PurC) from Mycobacterium abscessus Using a Fragment-Based Approach. Charoensutthivarakul S, Thomas SE, Curran A, Brown KP, Belardinelli JM, Whitehouse AJ, Acebrón-García-de-Eulate M, Sangan J, Gramani SG, Jackson M, Mendes V, Floto RA, Blundell TL, Coyne AG, Abell C. ACS Infect Dis 8 296-309 (2022)
  43. Fragments as Novel Starting Points for tRNA-Guanine Transglycosylase Inhibitors Found by Alternative Screening Strategies. Hassaan E, Eriksson PO, Geschwindner S, Heine A, Klebe G. ChemMedChem 15 324-337 (2020)
  44. Group depositions to the Protein Data Bank need adequate presentation and different archiving protocol. Jaskolski M, Wlodawer A, Dauter Z, Minor W, Rupp B. Protein Sci 31 784-786 (2022)
  45. Probing the Surface of a Parasite Drug Target Thioredoxin Glutathione Reductase Using Small Molecule Fragments. Fata F, Silvestri I, Ardini M, Ippoliti R, Di Leandro L, Demitri N, Polentarutti M, Di Matteo A, Lyu H, Thatcher GRJ, Petukhov PA, Williams DL, Angelucci F. ACS Infect Dis 7 1932-1944 (2021)
  46. Room-temperature serial synchrotron crystallography of the human phosphatase PTP1B. Sharma S, Ebrahim A, Keedy DA. Acta Crystallogr F Struct Biol Commun 79 23-30 (2023)
  47. Structure-Based Screening of Tetrazolylhydrazide Inhibitors versus KDM4 Histone Demethylases. Małecki PH, Rüger N, Roatsch M, Krylova O, Link A, Jung M, Heinemann U, Weiss MS. ChemMedChem 14 1828-1839 (2019)
  48. Turning high-throughput structural biology into predictive inhibitor design. Saar KL, McCorkindale W, Fearon D, Boby M, Barr H, Ben-Shmuel A, COVID Moonshot Consortium, London N, von Delft F, Chodera JD, Lee AA. Proc Natl Acad Sci U S A 120 e2214168120 (2023)
  49. A Novel Approach to Data Collection for Difficult Structures: Data Management for Large Numbers of Crystals with the BLEND Software. Mylona A, Carr S, Aller P, Moraes I, Treisman R, Evans G, Foadi J. Crystals (Basel) 7 242 (2017)
  50. Research Support, Non-U.S. Gov't Computer-aided drug design: time to play with novel chemical matter. Barril X. Expert Opin Drug Discov 12 977-980 (2017)
  51. Diamond Light Source: contributions to SARS-CoV-2 biology and therapeutics. Walsh MA, Grimes JM, Stuart DI. Biochem Biophys Res Commun 538 40-46 (2021)
  52. Innovative Approach for a Classic Target: Fragment Screening on Trypanothione Reductase Reveals New Opportunities for Drug Design. Fiorillo A, Colotti G, Exertier C, Liuzzi A, Seghetti F, Salerno A, Caciolla J, Ilari A. Front Mol Biosci 9 900882 (2022)
  53. Letter Of problems and opportunities-How to treat and how to not treat crystallographic fragment screening data. Weiss MS, Wollenhaupt J, Correy GJ, Fraser JS, Heine A, Klebe G, Krojer T, Thunissen M, Pearce NM. Protein Sci 31 e4391 (2022)
  54. Predicting protein-ligand binding affinity and correcting crystal structures with quantum mechanical calculations: lactate dehydrogenase A. Lukac I, Abdelhakim H, Ward RA, St-Gallay SA, Madden JC, Leach AG. Chem Sci 10 2218-2227 (2019)
  55. Rapid optimisation of fragments and hits to lead compounds from screening of crude reaction mixtures. Baker LM, Aimon A, Murray JB, Surgenor AE, Matassova N, Roughley SD, Collins PM, Krojer T, von Delft F, Hubbard RE. Commun Chem 3 122 (2020)
  56. SAMPL7 protein-ligand challenge: A community-wide evaluation of computational methods against fragment screening and pose-prediction. Grosjean H, Işık M, Aimon A, Mobley D, Chodera J, von Delft F, Biggin PC. J Comput Aided Mol Des 36 291-311 (2022)
  57. In crystallo-screening for discovery of human norovirus 3C-like protease inhibitors. Guo J, Douangamath A, Song W, Coker AR, Chan AWE, Wood SP, Cooper JB, Resnick E, London N, Delft FV. J Struct Biol X 4 100031 (2020)
  58. A Proof-of-Concept Fragment Screening of a Hit-Validated 96-Compounds Library against Human Carbonic Anhydrase II. Glöckner S, Heine A, Klebe G. Biomolecules 10 E518 (2020)
  59. A capillary-based microfluidic device enables primary high-throughput room-temperature crystallographic screening. Sui S, Mulichak A, Kulathila R, McGee J, Filiatreault D, Saha S, Cohen A, Song J, Hung H, Selway J, Kirby C, Shrestha OK, Weihofen W, Fodor M, Xu M, Chopra R, Perry SL. J Appl Crystallogr 54 1034-1046 (2021)
  60. Fragment Screening Reveals Starting Points for Rational Design of Galactokinase 1 Inhibitors to Treat Classic Galactosemia. Mackinnon SR, Krojer T, Foster WR, Diaz-Saez L, Tang M, Huber KVM, von Delft F, Lai K, Brennan PE, Arruda Bezerra G, Yue WW. ACS Chem Biol 16 586-595 (2021)
  61. Serial Femtosecond Crystallography Reveals that Photoactivation in a Fluorescent Protein Proceeds via the Hula Twist Mechanism. Fadini A, Hutchison CDM, Morozov D, Chang J, Maghlaoui K, Perrett S, Luo F, Kho JCX, Romei MG, Morgan RML, Orr CM, Cordon-Preciado V, Fujiwara T, Nuemket N, Tosha T, Tanaka R, Owada S, Tono K, Iwata S, Boxer SG, Groenhof G, Nango E, van Thor JJ. J Am Chem Soc 145 15796-15808 (2023)
  62. Ten things I `hate' about refinement. Roversi P, Tronrud DE. Acta Crystallogr D Struct Biol 77 1497-1515 (2021)
  63. Torsion angles to map and visualize the conformational space of a protein. Ginn HM. Protein Sci 32 e4608 (2023)
  64. 'Chemistry at the speed of sound': automated 1536-well nanoscale synthesis of 16 scaffolds in parallel. Gao L, Shaabani S, Reyes Romero A, Xu R, Ahmadianmoghaddam M, Dömling A. Green Chem 25 1380-1394 (2023)
  65. Allosteric regulation and crystallographic fragment screening of SARS-CoV-2 NSP15 endoribonuclease. Godoy AS, Nakamura AM, Douangamath A, Song Y, Noske GD, Gawriljuk VO, Fernandes RS, Pereira HDM, Oliveira KIZ, Fearon D, Dias A, Krojer T, Fairhead M, Powell A, Dunnet L, Brandao-Neto J, Skyner R, Chalk R, Bajusz D, Bege M, Borbás A, Keserű GM, von Delft F, Oliva G. Nucleic Acids Res 51 5255-5270 (2023)
  66. Crystal polymorphism in fragment-based lead discovery of ligands of the catalytic domain of UGGT, the glycoprotein folding quality control checkpoint. Caputo AT, Ibba R, Le Cornu JD, Darlot B, Hensen M, Lipp CB, Marcianò G, Vasiljević S, Zitzmann N, Roversi P. Front Mol Biosci 9 960248 (2022)
  67. FLEXR: automated multi-conformer model building using electron-density map sampling. Stachowski TR, Fischer M. Acta Crystallogr D Struct Biol 79 354-367 (2023)
  68. Hydrazones and Thiosemicarbazones Targeting Protein-Protein-Interactions of SARS-CoV-2 Papain-like Protease. Ewert W, Günther S, Miglioli F, Falke S, Reinke PYA, Niebling S, Günther C, Han H, Srinivasan V, Brognaro H, Lieske J, Lorenzen K, Garcia-Alai MM, Betzel C, Carcelli M, Hinrichs W, Rogolino D, Meents A. Front Chem 10 832431 (2022)
  69. Structures of the Plasmodium falciparum heat-shock protein 70-x ATPase domain in complex with chemical fragments identify conserved and unique binding sites. Mohamad N, O'Donoghue A, Kantsadi AL, Vakonakis I. Acta Crystallogr F Struct Biol Commun 77 262-268 (2021)
  70. A pocket-based 3D molecule generative model fueled by experimental electron density. Wang L, Bai R, Shi X, Zhang W, Cui Y, Wang X, Wang C, Chang H, Zhang Y, Zhou J, Peng W, Zhou W, Huang B. Sci Rep 12 15100 (2022)
  71. Accelerating drug target inhibitor discovery with a deep generative foundation model. Chenthamarakshan V, Hoffman SC, Owen CD, Lukacik P, Strain-Damerell C, Fearon D, Malla TR, Tumber A, Schofield CJ, Duyvesteyn HME, Dejnirattisai W, Carrique L, Walter TS, Screaton GR, Matviiuk T, Mojsilovic A, Crain J, Walsh MA, Stuart DI, Das P. Sci Adv 9 eadg7865 (2023)
  72. Discovery of Small-Molecule Allosteric Inhibitors of PfATC as Antimalarials. Wang C, Zhang B, Krüger A, Du X, Visser L, Dömling ASS, Wrenger C, Groves MR. J Am Chem Soc 144 19070-19077 (2022)
  73. Discovery of novel druggable pockets on polyomavirus VP1 through crystallographic fragment-based screening to develop capsid assembly inhibitors. Osipov EM, Munawar AH, Beelen S, Fearon D, Douangamath A, Wild C, Weeks SD, Van Aerschot A, von Delft F, Strelkov SV. RSC Chem Biol 3 1013-1027 (2022)
  74. Experiences From Developing Software for Large X-Ray Crystallography-Driven Protein-Ligand Studies. Pearce NM, Skyner R, Krojer T. Front Mol Biosci 9 861491 (2022)
  75. Exploring ligand dynamics in protein crystal structures with ensemble refinement. Caldararu O, Ekberg V, Logan DT, Oksanen E, Ryde U. Acta Crystallogr D Struct Biol 77 1099-1115 (2021)
  76. Fragment-Based Ligand Discovery Applied to the Mycolic Acid Methyltransferase Hma (MmaA4) from Mycobacterium tuberculosis: A Crystallographic and Molecular Modelling Study. Galy R, Ballereau S, Génisson Y, Mourey L, Plaquevent JC, Maveyraud L. Pharmaceuticals (Basel) 14 1282 (2021)
  77. Guest-protein incorporation into solvent channels of a protein host crystal (hostal). Sprenger J, Carey J, Schulz A, Drouard F, Lawson CL, von Wachenfeldt C, Linse S, Lo Leggio L. Acta Crystallogr D Struct Biol 77 471-485 (2021)
  78. Mapping Ligand Interactions of Bromodomains BRD4 and ATAD2 with FragLites and PepLites─Halogenated Probes of Druglike and Peptide-like Molecular Interactions. Davison G, Martin MP, Turberville S, Dormen S, Heath R, Heptinstall AB, Lawson M, Miller DC, Ng YM, Sanderson JN, Hope I, Wood DJ, Cano C, Endicott JA, Hardcastle IR, Noble MEM, Waring MJ. J Med Chem 65 15416-15432 (2022)
  79. Precipitant-ligand exchange technique reveals the ADP binding mode in Mycobacterium tuberculosis dethiobiotin synthetase. Thompson AP, Wegener KL, Booker GW, Polyak SW, Bruning JB. Acta Crystallogr D Struct Biol 74 965-972 (2018)
  80. Structural Analysis and Development of Notum Fragment Screening Hits. Zhao Y, Mahy W, Willis NJ, Woodward HL, Steadman D, Bayle ED, Atkinson BN, Sipthorp J, Vecchia L, Ruza RR, Harlos K, Jeganathan F, Constantinou S, Costa A, Kjær S, Bictash M, Salinas PC, Whiting P, Vincent JP, Fish PV, Jones EY. ACS Chem Neurosci 13 2060-2077 (2022)
  81. Crystal structures of Val58Ile tryptophan repressor in a domain-swapped array in the presence and absence of L-tryptophan. Sprenger J, Lawson CL, von Wachenfeldt C, Lo Leggio L, Carey J. Acta Crystallogr F Struct Biol Commun 77 215-225 (2021)
  82. Discovery of Five SOS2 Fragment Hits with Binding Modes Determined by SOS2 X-Ray Cocrystallography. Smith CR, Chen D, Christensen JG, Coulombe R, Féthière J, Gunn RJ, Hollander J, Jones B, Ketcham JM, Khare S, Kuehler J, Lawson JD, Marx MA, Olson P, Pearson KE, Ren C, Tsagris D, Ulaganathan T, Van't Veer I, Wang X, Ivetac A. J Med Chem 67 774-781 (2024)
  83. Fragment library screening by X-ray crystallography and binding site analysis on thioredoxin glutathione reductase of Schistosoma mansoni. de Souza Neto LR, Montoya BO, Brandão-Neto J, Verma A, Bowyer S, Moreira-Filho JT, Dantas RF, Neves BJ, Andrade CH, von Delft F, Owens RJ, Furnham N, Silva-Jr FP. Sci Rep 14 1582 (2024)
  84. Identification and characterization of two drug-like fragments that bind to the same cryptic binding pocket of Burkholderia pseudomallei DsbA. Petit GA, Mohanty B, McMahon RM, Nebl S, Hilko DH, Wilde KL, Scanlon MJ, Martin JL, Halili MA. Acta Crystallogr D Struct Biol 78 75-90 (2022)
  85. Modulating Conformational Preferences by Allylic Strain toward Improved Physical Properties and Binding Interactions. Zhao H. ACS Omega 7 9080-9085 (2022)
  86. Novel Starting Points for Human Glycolate Oxidase Inhibitors, Revealed by Crystallography-Based Fragment Screening. Mackinnon SR, Bezerra GA, Krojer T, Szommer T, von Delft F, Brennan PE, Yue WW. Front Chem 10 844598 (2022)
  87. Novel starting points for fragment-based drug design against mycobacterial thioredoxin reductase identified using crystallographic fragment screening. Füsser FT, Wollenhaupt J, Weiss MS, Kümmel D, Koch O. Acta Crystallogr D Struct Biol 79 857-865 (2023)
  88. Perspective: Structure determination of protein-ligand complexes at room temperature using X-ray diffraction approaches. Hough MA, Prischi F, Worrall JAR. Front Mol Biosci 10 1113762 (2023)