6ajg Citations

Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target.

Cell 176 636-648.e13 (2019)
Related entries: 6ajf, 6ajh, 6aji, 6ajj

Cited: 93 times
EuropePMC logo PMID: 30682372

Abstract

Despite intensive efforts to discover highly effective treatments to eradicate tuberculosis (TB), it remains as a major threat to global human health. For this reason, new TB drugs directed toward new targets are highly coveted. MmpLs (Mycobacterial membrane proteins Large), which play crucial roles in transporting lipids, polymers and immunomodulators and which also extrude therapeutic drugs, are among the most important therapeutic drug targets to emerge in recent times. Here, crystal structures of mycobacterial MmpL3 alone and in complex with four TB drug candidates, including SQ109 (in Phase 2b-3 clinical trials), are reported. MmpL3 consists of a periplasmic pore domain and a twelve-helix transmembrane domain. Two Asp-Tyr pairs centrally located in this domain appear to be key facilitators of proton-translocation. SQ109, AU1235, ICA38, and rimonabant bind inside the transmembrane region and disrupt these Asp-Tyr pairs. This structural data will greatly advance the development of MmpL3 inhibitors as new TB drugs.

Reviews - 6ajg mentioned but not cited (4)

  1. Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall. Batt SM, Burke CE, Moorey AR, Besra GS. Cell Surf 6 100044 (2020)
  2. Targeting MmpL3 for anti-tuberculosis drug development. Bolla JR. Biochem Soc Trans 48 1463-1472 (2020)
  3. Update on the Discovery of Efflux Pump Inhibitors against Critical Priority Gram-Negative Bacteria. Compagne N, Vieira Da Cruz A, Müller RT, Hartkoorn RC, Flipo M, Pos KM. Antibiotics (Basel) 12 180 (2023)
  4. MmpL3 Inhibition as a Promising Approach to Develop Novel Therapies against Tuberculosis: A Spotlight on SQ109, Clinical Studies, and Patents Literature. Imran M, Arora MK, Chaudhary A, Khan SA, Kamal M, Alshammari MM, Alharbi RM, Althomali NA, Alzimam IM, Alshammari AA, Alharbi BH, Alshengeti A, Alsaleh AA, Alqahtani SA, Rabaan AA. Biomedicines 10 2793 (2022)

Articles - 6ajg mentioned but not cited (10)

  1. Multidrug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors. Zgurskaya HI, Walker JK, Parks JM, Rybenkov VV. Acc Chem Res 54 930-939 (2021)
  2. Hydroxylation of Antitubercular Drug Candidate, SQ109, by Mycobacterial Cytochrome P450. Bukhdruker S, Varaksa T, Grabovec I, Marin E, Shabunya P, Kadukova M, Grudinin S, Kavaleuski A, Gusach A, Gilep A, Borshchevskiy V, Strushkevich N. Int J Mol Sci 21 E7683 (2020)
  3. Structure, In Vivo Detection, and Antibacterial Activity of Metabolites of SQ109, an Anti-Infective Drug Candidate. Malwal SR, Zimmerman MD, Alvarez N, Sarathy JP, Dartois V, Nacy CA, Oldfield E. ACS Infect Dis 7 2492-2507 (2021)
  4. Analysis of the oligomeric state of mycobacterial membrane protein large 3 and its interaction with SQ109 with native cell membrane nanoparticles system. Qiu W, Guo Y. Biochim Biophys Acta Biomembr 1864 183793 (2022)
  5. The Antimalarial Mefloquine Shows Activity against Mycobacterium abscessus, Inhibiting Mycolic Acid Metabolism. Degiacomi G, Chiarelli LR, Recchia D, Petricci E, Gianibbi B, Fiscarelli EV, Fattorini L, Manetti F, Pasca MR. Int J Mol Sci 22 8533 (2021)
  6. Designing of Thiazolidinones for COVID-19 and its Allied Diseases: An In silico Evaluation. Raza MA, Farwa U, Ain NQU, Ishaque F, Yaseen M, Naveed M, Shabbir MA. ChemistrySelect 7 e202201793 (2022)
  7. Structural Determinants of Indole-2-carboxamides: Identification of Lead Acetamides with Pan Antimycobacterial Activity. Bhattarai P, Hegde P, Li W, Prathipati PK, Stevens CM, Yang L, Zhou H, Pandya A, Cunningham K, Grissom J, Roman Sotelo M, Sowards M, Calisto L, Destache CJ, Rocha-Sanchez S, Gumbart JC, Zgurskaya HI, Jackson M, North EJ. J Med Chem 66 170-187 (2023)
  8. Computational design of MmpL3 inhibitors for tuberculosis therapy. Chaitra R, Gandhi R, Jayanna N, Satyanath S, Pavadai P, Murahari M. Mol Divers 27 357-369 (2023)
  9. Inhibition Mechanism of Anti-TB Drug SQ109: Allosteric Inhibition of TMM Translocation of Mycobacterium Tuberculosis MmpL3 Transporter. Carbone J, Paradis NJ, Bennet L, Alesiani MC, Hausman KR, Wu C. J Chem Inf Model 63 5356-5374 (2023)
  10. Study of SQ109 analogs binding to mycobacterium MmpL3 transporter using MD simulations and alchemical relative binding free energy calculations. Stampolaki M, Stylianakis I, Zgurskaya HI, Kolocouris A. J Comput Aided Mol Des 37 245-264 (2023)


Reviews citing this publication (26)

  1. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Johansen MD, Herrmann JL, Kremer L. Nat Rev Microbiol 18 392-407 (2020)
  2. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Chem Rev 121 5479-5596 (2021)
  3. The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host's immune system. Batt SM, Minnikin DE, Besra GS. Biochem J 477 1983-2006 (2020)
  4. MmpL Proteins in Physiology and Pathogenesis of M. tuberculosis. Melly G, Purdy GE. Microorganisms 7 E70 (2019)
  5. Structural and Functional Diversity of Resistance-Nodulation-Cell Division Transporters. Klenotic PA, Moseng MA, Morgan CE, Yu EW. Chem Rev 121 5378-5416 (2021)
  6. Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope. Jackson M, Stevens CM, Zhang L, Zgurskaya HI, Niederweis M. Chem Rev 121 5124-5157 (2021)
  7. Disruption of Intracellular Calcium Homeostasis as a Therapeutic Target Against Trypanosoma cruzi. Benaim G, Paniz-Mondolfi AE, Sordillo EM, Martinez-Sotillo N. Front Cell Infect Microbiol 10 46 (2020)
  8. Tuberculosis Drug Discovery: A Decade of Hit Assessment for Defined Targets. Oh S, Trifonov L, Yadav VD, Barry CE, Boshoff HI. Front Cell Infect Microbiol 11 611304 (2021)
  9. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Hasenoehrl EJ, Wiggins TJ, Berney M. Front Cell Infect Microbiol 10 611683 (2020)
  10. Pipeline of anti-Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities. Egorova A, Jackson M, Gavrilyuk V, Makarov V. Med Res Rev 41 2350-2387 (2021)
  11. Multitargeting Compounds: A Promising Strategy to Overcome Multi-Drug Resistant Tuberculosis. Stelitano G, Sammartino JC, Chiarelli LR. Molecules 25 E1239 (2020)
  12. MmpL3 Inhibition: A New Approach to Treat Nontuberculous Mycobacterial Infections. Sethiya JP, Sowards MA, Jackson M, North EJ. Int J Mol Sci 21 E6202 (2020)
  13. Mycobacterium smegmatis: The Vanguard of Mycobacterial Research. Sparks IL, Derbyshire KM, Jacobs WR, Morita YS. J Bacteriol 205 e0033722 (2023)
  14. Overcoming Mycobacterium tuberculosis through small molecule inhibitors to break down cell wall synthesis. Kuang W, Zhang H, Wang X, Yang P. Acta Pharm Sin B 12 3201-3214 (2022)
  15. The role of transport proteins in the production of microbial glycolipid biosurfactants. Claus S, Jenkins Sánchez L, Van Bogaert INA. Appl Microbiol Biotechnol 105 1779-1793 (2021)
  16. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. Xu X, Dong B, Peng L, Gao C, He Z, Wang C, Zeng J. Front Microbiol 13 1056608 (2022)
  17. Cryo-EM as a tool to study bacterial efflux systems and the membrane proteome. Klenotic PA, Morgan CE, Yu EW. Fac Rev 10 24 (2021)
  18. Molecular Mechanisms of MmpL3 Function and Inhibition. Williams JT, Abramovitch RB. Microb Drug Resist 29 190-212 (2023)
  19. Potential Repurposed Drug Candidates for Tuberculosis Treatment: Progress and Update of Drugs Identified in Over a Decade. Sharma K, Ahmed F, Sharma T, Grover A, Agarwal M, Grover S. ACS Omega 8 17362-17380 (2023)
  20. Pyrazole-containing pharmaceuticals: target, pharmacological activity, and their SAR studies. Li G, Cheng Y, Han C, Song C, Huang N, Du Y. RSC Med Chem 13 1300-1321 (2022)
  21. Potential therapeutic targets from Mycobacterium abscessus (Mab): recently reported efforts towards the discovery of novel antibacterial agents to treat Mab infections. Addison W, Frederickson M, Coyne AG, Abell C. RSC Med Chem 13 392-404 (2022)
  22. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. Mol Biomed 3 48 (2022)
  23. Tuberculosis: Pathogenesis, Current Treatment Regimens and New Drug Targets. Alsayed SSR, Gunosewoyo H. Int J Mol Sci 24 5202 (2023)
  24. Drug-resistant strains of Mycobacterium tuberculosis: cell envelope profiles and interactions with the host. Schami A, Islam MN, Belisle JT, Torrelles JB. Front Cell Infect Microbiol 13 1274175 (2023)
  25. Molecular Modeling and Simulation of the Mycobacterial Cell Envelope: From Individual Components to Cell Envelope Assemblies. Brown T, Chavent M, Im W. J Phys Chem B 127 10941-10949 (2023)
  26. Recent advances in mycobacterial membrane protein large 3 inhibitor drug design for mycobacterial infections. North EJ, Schwartz CP, Zgurskaya HI, Jackson M. Expert Opin Drug Discov 18 707-724 (2023)

Articles citing this publication (53)

  1. MmpL3 is a lipid transporter that binds trehalose monomycolate and phosphatidylethanolamine. Su CC, Klenotic PA, Bolla JR, Purdy GE, Robinson CV, Yu EW. Proc Natl Acad Sci U S A 116 11241-11246 (2019)
  2. Direct Inhibition of MmpL3 by Novel Antitubercular Compounds. Li W, Stevens CM, Pandya AN, Darzynkiewicz Z, Bhattarai P, Tong W, Gonzalez-Juarrero M, North EJ, Zgurskaya HI, Jackson M. ACS Infect Dis 5 1001-1012 (2019)
  3. Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2. Zhao Y, Zhu Y, Liu X, Jin Z, Duan Y, Zhang Q, Wu C, Feng L, Du X, Zhao J, Shao M, Zhang B, Yang X, Wu L, Ji X, Guddat LW, Yang K, Rao Z, Yang H. Proc Natl Acad Sci U S A 119 e2117142119 (2022)
  4. Identification of antigens presented by MHC for vaccines against tuberculosis. Bettencourt P, Müller J, Nicastri A, Cantillon D, Madhavan M, Charles PD, Fotso CB, Wittenberg R, Bull N, Pinpathomrat N, Waddell SJ, Stylianou E, Hill AVS, Ternette N, McShane H. NPJ Vaccines 5 2 (2020)
  5. Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV Pandemic Response Box. Reader J, van der Watt ME, Taylor D, Le Manach C, Mittal N, Ottilie S, Theron A, Moyo P, Erlank E, Nardini L, Venter N, Lauterbach S, Bezuidenhout B, Horatscheck A, van Heerden A, Spillman NJ, Cowell AN, Connacher J, Opperman D, Orchard LM, Llinás M, Istvan ES, Goldberg DE, Boyle GA, Calvo D, Mancama D, Coetzer TL, Winzeler EA, Duffy J, Koekemoer LL, Basarab G, Chibale K, Birkholtz LM. Nat Commun 12 269 (2021)
  6. Identification of New MmpL3 Inhibitors by Untargeted and Targeted Mutant Screens Defines MmpL3 Domains with Differential Resistance. Williams JT, Haiderer ER, Coulson GB, Conner KN, Ellsworth E, Chen C, Alvarez-Cabrera N, Li W, Jackson M, Dick T, Abramovitch RB. Antimicrob Agents Chemother 63 e00547-19 (2019)
  7. Utilization of CRISPR Interference To Validate MmpL3 as a Drug Target in Mycobacterium tuberculosis. McNeil MB, Cook GM. Antimicrob Agents Chemother 63 e00629-19 (2019)
  8. Targeting STAT3 by a small molecule suppresses pancreatic cancer progression. Chen H, Bian A, Yang LF, Yin X, Wang J, Ti C, Miao Y, Peng S, Xu S, Liu M, Qiu WW, Yi Z. Oncogene 40 1440-1457 (2021)
  9. A piperidinol-containing molecule is active against Mycobacterium tuberculosis by inhibiting the mycolic acid flippase activity of MmpL3. Dupont C, Chen Y, Xu Z, Roquet-Banères F, Blaise M, Witt AK, Dubar F, Biot C, Guérardel Y, Maurer FP, Chng SS, Kremer L. J Biol Chem 294 17512-17523 (2019)
  10. Two Accessory Proteins Govern MmpL3 Mycolic Acid Transport in Mycobacteria. Fay A, Czudnochowski N, Rock JM, Johnson JR, Krogan NJ, Rosenberg O, Glickman MS. mBio 10 e00850-19 (2019)
  11. The MmpL3 interactome reveals a complex crosstalk between cell envelope biosynthesis and cell elongation and division in mycobacteria. Belardinelli JM, Stevens CM, Li W, Tan YZ, Jones V, Mancia F, Zgurskaya HI, Jackson M. Sci Rep 9 10728 (2019)
  12. Cryo-EM structures of NPC1L1 reveal mechanisms of cholesterol transport and ezetimibe inhibition. Huang CS, Yu X, Fordstrom P, Choi K, Chung BC, Roh SH, Chiu W, Zhou M, Min X, Wang Z. Sci Adv 6 eabb1989 (2020)
  13. Pyridylpiperazine-based allosteric inhibitors of RND-type multidrug efflux pumps. Plé C, Tam HK, Vieira Da Cruz A, Compagne N, Jiménez-Castellanos JC, Müller RT, Pradel E, Foong WE, Malloci G, Ballée A, Kirchner MA, Moshfegh P, Herledan A, Herrmann A, Deprez B, Willand N, Vargiu AV, Pos KM, Flipo M, Hartkoorn RC. Nat Commun 13 115 (2022)
  14. 1H-Benzo[d]Imidazole Derivatives Affect MmpL3 in Mycobacterium tuberculosis. Korycka-Machała M, Viljoen A, Pawełczyk J, Borówka P, Dziadek B, Gobis K, Brzostek A, Kawka M, Blaise M, Strapagiel D, Kremer L, Dziadek J. Antimicrob Agents Chemother 63 e00441-19 (2019)
  15. Structure-Based Design and Synthesis of Piperidinol-Containing Molecules as New Mycobacterium abscessus Inhibitors. de Ruyck J, Dupont C, Lamy E, Le Moigne V, Biot C, Guérardel Y, Herrmann JL, Blaise M, Grassin-Delyle S, Kremer L, Dubar F. ChemistryOpen 9 351-365 (2020)
  16. Cryo-EM structure and resistance landscape of M. tuberculosis MmpL3: An emergent therapeutic target. Adams O, Deme JC, Parker JL, CRyPTIC Consortium, Fowler PW, Lea SM, Newstead S. Structure 29 1182-1191.e4 (2021)
  17. Novel Pyrazole-Containing Compounds Active against Mycobacterium tuberculosis. Poce G, Consalvi S, Venditti G, Alfonso S, Desideri N, Fernandez-Menendez R, Bates RH, Ballell L, Barros Aguirre D, Rullas J, De Logu A, Gardner M, Ioerger TR, Rubin EJ, Biava M. ACS Med Chem Lett 10 1423-1429 (2019)
  18. Structural basis of trehalose recycling by the ABC transporter LpqY-SugABC. Liu F, Liang J, Zhang B, Gao Y, Yang X, Hu T, Yang H, Xu W, Guddat LW, Rao Z. Sci Adv 6 eabb9833 (2020)
  19. Structures of the mycobacterial membrane protein MmpL3 reveal its mechanism of lipid transport. Su CC, Klenotic PA, Cui M, Lyu M, Morgan CE, Yu EW. PLoS Biol 19 e3001370 (2021)
  20. Coexpression of MmpS5 and MmpL5 Contributes to Both Efflux Transporter MmpL5 Trimerization and Drug Resistance in Mycobacterium tuberculosis. Yamamoto K, Nakata N, Mukai T, Kawagishi I, Ato M. mSphere 6 e00518-20 (2021)
  21. Identification of novel scaffolds targeting Mycobacterium tuberculosis. Dal Molin M, Selchow P, Schäfle D, Tschumi A, Ryckmans T, Laage-Witt S, Sander P. J Mol Med (Berl) 97 1601-1613 (2019)
  22. Two-Way Regulation of MmpL3 Expression Identifies and Validates Inhibitors of MmpL3 Function in Mycobacterium tuberculosis. Grover S, Engelhart CA, Pérez-Herrán E, Li W, Abrahams KA, Papavinasasundaram K, Bean JM, Sassetti CM, Mendoza-Losana A, Besra GS, Jackson M, Schnappinger D. ACS Infect Dis 7 141-152 (2021)
  23. Design, synthesis, and biological evaluation of novel arylcarboxamide derivatives as anti-tubercular agents. Alsayed SSR, Lun S, Luna G, Beh CC, Payne AD, Foster N, Bishai WR, Gunosewoyo H. RSC Adv 10 7523-7540 (2020)
  24. Potency Increase of Spiroketal Analogs of Membrane Inserting Indolyl Mannich Base Antimycobacterials Is Due to Acquisition of MmpL3 Inhibition. Li M, Phua ZY, Xi Y, Xu Z, Nyantakyi SA, Li W, Jackson M, Wong MW, Lam Y, Chng SS, Go ML, Dick T. ACS Infect Dis 6 1882-1893 (2020)
  25. Proton transfer activity of the reconstituted Mycobacterium tuberculosis MmpL3 is modulated by substrate mimics and inhibitors. Stevens CM, Babii SO, Pandya AN, Li W, Li Y, Mehla J, Scott R, Hegde P, Prathipati PK, Acharya A, Liu J, Gumbart JC, North J, Jackson M, Zgurskaya HI. Proc Natl Acad Sci U S A 119 e2113963119 (2022)
  26. Antitubercular 2-Pyrazolylpyrimidinones: Structure-Activity Relationship and Mode-of-Action Studies. Soares de Melo C, Singh V, Myrick A, Simelane SB, Taylor D, Brunschwig C, Lawrence N, Schnappinger D, Engelhart CA, Kumar A, Parish T, Su Q, Myers TG, Boshoff HIM, Barry CE, Sirgel FA, van Helden PD, Buchanan KI, Bayliss T, Green SR, Ray PC, Wyatt PG, Basarab GS, Eyermann CJ, Chibale K, Chibale K, Ghorpade SR. J Med Chem 64 719-740 (2021)
  27. Efflux identification and engineering for ansamitocin P-3 production in Actinosynnema pretiosum. Wang X, Wei J, Xiao Y, Luan S, Ning X, Bai L. Appl Microbiol Biotechnol 105 695-706 (2021)
  28. A Hydrazine-Hydrazone Adamantine Compound Shows Antimycobacterial Activity and Is a Probable Inhibitor of MmpL3. Briffotaux J, Xu Y, Huang W, Hui Z, Wang X, Gicquel B, Liu S. Molecules 27 7130 (2022)
  29. Amide-Amine Replacement in Indole-2-carboxamides Yields Potent Mycobactericidal Agents with Improved Water Solubility. Tan YJ, Li M, Gunawan GA, Nyantakyi SA, Dick T, Go ML, Lam Y. ACS Med Chem Lett 12 704-712 (2021)
  30. Design, synthesis and antimycobacterial evaluation of novel adamantane and adamantanol analogues effective against drug-resistant tuberculosis. Alsayed SSR, Lun S, Payne A, Bishai WR, Gunosewoyo H. Bioorg Chem 106 104486 (2021)
  31. Structural basis for the broad substrate specificity of two acyl-CoA dehydrogenases FadE5 from mycobacteria. Chen X, Chen J, Yan B, Zhang W, Guddat LW, Liu X, Rao Z. Proc Natl Acad Sci U S A 117 16324-16332 (2020)
  32. Synthesis and Testing of Analogs of the Tuberculosis Drug Candidate SQ109 against Bacteria and Protozoa: Identification of Lead Compounds against Mycobacterium abscessus and Malaria Parasites. Stampolaki M, Malwal SR, Alvarez-Cabrera N, Gao Z, Moniruzzaman M, Babii SO, Naziris N, Rey-Cibati A, Valladares-Delgado M, Turcu AL, Baek KH, Phan TN, Lee H, Alcaraz M, Watson S, van der Watt M, Coertzen D, Efstathiou N, Chountoulesi M, Shoen CM, Papanastasiou IP, Brea J, Cynamon MH, Birkholtz LM, Kremer L, No JH, Vázquez S, Benaim G, Demetzos C, Zgurskaya HI, Dick T, Oldfield E, Kolocouris AD. ACS Infect Dis 9 342-364 (2023)
  33. Design, Synthesis, and Biological Evaluation of Pyrrole-2-carboxamide Derivatives as Mycobacterial Membrane Protein Large 3 Inhibitors for Treating Drug-Resistant Tuberculosis. Zhao H, Gao Y, Li W, Sheng L, Cui K, Wang B, Fu L, Gao M, Lin Z, Zou X, Jackson M, Huang H, Lu Y, Zhang D. J Med Chem 65 10534-10553 (2022)
  34. Design, synthesis and evaluation of novel indole-2-carboxamides for growth inhibition of Mycobacterium tuberculosis and paediatric brain tumour cells. Alsayed SSR, Lun S, Bailey AW, Suri A, Huang CC, Mocerino M, Payne A, Sredni ST, Bishai WR, Gunosewoyo H. RSC Adv 11 15497-15511 (2021)
  35. Improving the Potency of N-Aryl-2,5-dimethylpyrroles against Multidrug-Resistant and Intracellular Mycobacteria. Touitou M, Manetti F, Ribeiro CM, Pavan FR, Scalacci N, Zrebna K, Begum N, Semenya D, Gupta A, Bhakta S, McHugh TD, Senderowitz H, Kyriazi M, Castagnolo D. ACS Med Chem Lett 11 638-644 (2020)
  36. Insights into substrate transport and water permeation in the mycobacterial transporter MmpL3. Li Y, Acharya A, Yang L, Liu J, Tajkhorshid E, Zgurskaya HI, Jackson M, Gumbart JC. Biophys J 122 2342-2352 (2023)
  37. The evolution of antibiotic resistance is associated with collateral drug phenotypes in Mycobacterium tuberculosis. Waller NJE, Cheung CY, Cook GM, McNeil MB. Nat Commun 14 1517 (2023)
  38. The multi-target aspect of an MmpL3 inhibitor: The BM212 series of compounds bind EthR2, a transcriptional regulator of ethionamide activation. Moorey AR, Cabanillas A, Batt SM, Ghidelli-Disse S, Urones B, Sanz O, Lelievre J, Bantscheff M, Cox LR, Besra GS. Cell Surf 7 100068 (2021)
  39. Dimethylaminophenyl Hydrazides as Inhibitors of the Lipid Transport Protein LprG in Mycobacteria. Bai L, Parkin LA, Zhang H, Shum R, Previti ML, Seeliger JC. ACS Infect Dis 6 637-648 (2020)
  40. Isoxazole carboxylic acid methyl ester-based urea and thiourea derivatives as promising antitubercular agents. Sahoo SK, Ommi O, Maddipatla S, Singh P, Ahmad MN, Kaul G, Nanduri S, Dasgupta A, Chopra S, Yaddanapudi VM. Mol Divers 27 2037-2052 (2023)
  41. Letter Microbiological profile, preclinical pharmacokinetics and efficacy of CRS0393, a novel antimycobacterial agent targeting MmpL3. Ochsner UA, De Groote MA, Jarvis TC, Liu H, Youmans T, Hoang T, Ribble W, Day J, Li W, Pearce C, Walz A, Panthi CM, Rimal B, Stevens CM, Zgurskaya HI, Jackson M, Ordway D, Gonzalez-Juarrero M, Sun X, Lamichhane G, Mason C. Tuberculosis (Edinb) 138 102288 (2023)
  42. Mycobacteriophages as Genomic Engineers and Anti-infective Weapons. Sullivan MR, Rubin EJ, Dulberger CL. mBio 12 e00632-21 (2021)
  43. Novel chemical entities inhibiting Mycobacterium tuberculosis growth identified by phenotypic high-throughput screening. Kumar A, Chettiar S, Brown BS, Early J, Ollinger J, Files M, Bailey MA, Korkegian A, Dennison D, McNeil M, Metz J, Osuma A, Curtin M, Kunzer A, Freiberg G, Bruncko M, Kempf D, Parish T. Sci Rep 12 14879 (2022)
  44. Structure-function analysis of MmpL7-mediated lipid transport in mycobacteria. Moolla N, Bailo R, Marshall R, Bavro VN, Bhatt A. Cell Surf 7 100062 (2021)
  45. Cryo-EM structure of the trehalose monomycolate transporter, MmpL3, reconstituted into peptidiscs. Couston J, Guo Z, Wang K, Gourdon P, Blaise M. Curr Res Struct Biol 6 100109 (2023)
  46. Investigation into the Mechanism of Action of the Tuberculosis Drug Candidate SQ109 and Its Metabolites and Analogues in Mycobacteria. Malwal SR, Mazurek B, Ko J, Xie P, Barnes C, Varvitsiotis C, Zimmerman MD, Olatunji S, Lee J, Xie M, Sarathy J, Caffrey M, Strynadka NCJ, Dartois V, Dick T, Lee BNR, Russell DG, Oldfield E. J Med Chem 66 7553-7569 (2023)
  47. Molecular insights into Mmpl3 leads to the development of novel indole-2-carboxamides as antitubercular agents. Ray R, Birangal SR, Fathima F, Boshoff HI, Forbes HE, Chandrashekhar RH, Shenoy GG. Mol Syst Des Eng 7 592-606 (2022)
  48. Molecular recognition of trehalose and trehalose analogues by Mycobacterium tuberculosis LpqY-SugABC. Liang J, Liu F, Xu P, Shangguan W, Hu T, Wang S, Yang X, Xiong Z, Yang X, Guddat LW, Yu B, Rao Z, Zhang B. Proc Natl Acad Sci U S A 120 e2307625120 (2023)
  49. Possible Action of Transition Divalent Metal Ions at the Inter-Pentameric Interface of Inactivated Foot-and-Mouth Disease Virus Provide A Simple but Effective Approach to Enhance Stability. Lin X, Yang Y, Song Y, Li S, Zhang X, Su Z, Zhang S. J Virol 95 JVI.02431-20 (2021)
  50. Preclinical characterization of WB737, a potent and selective STAT3 inhibitor, in natural killer/T-cell lymphoma. Wang Y, Zhou W, Chen J, Chen J, Deng P, Chen H, Sun Y, Yu Z, Pang D, Liu L, Wang P, Hong JH, Teh BT, Huang H, Li W, Yi Z, Lim ST, Chen Y, Ong CK, Liu M, Tan J. MedComm (2020) 4 e284 (2023)
  51. S288T mutation altering MmpL3 periplasmic domain channel and H-bond network: a novel dual drug resistance mechanism. Ge Y, Luo Q, Liu L, Shi Q, Zhang Z, Yue X, Tang L, Liang L, Hu J, Ouyang W. J Mol Model 30 39 (2024)
  52. Structure of the priming arabinosyltransferase AftA required for AG biosynthesis of Mycobacterium tuberculosis. Gong Y, Wei C, Wang J, Mu N, Lu Q, Wu C, Yan N, Yang H, Zhao Y, Yang X, Gurcha SS, Veerapen N, Batt SM, Hao Z, Da L, Besra GS, Rao Z, Zhang L. Proc Natl Acad Sci U S A 120 e2302858120 (2023)
  53. Structure-directed identification of pyridine-2-methylamine derivatives as MmpL3 inhibitors for use as antitubercular agents. Wen Y, Lun S, Jiao Y, Zhang W, Liu T, Yang F, Tang J, Bishai WR, Yu LF. Eur J Med Chem 255 115351 (2023)