6cbd Citations

Phase Transitions in the Assembly and Function of Human miRISC.

Cell 173 946-957.e16 (2018)
Cited: 121 times
EuropePMC logo PMID: 29576456

Abstract

miRISC is a multi-protein assembly that uses microRNAs (miRNAs) to identify mRNAs targeted for repression. Dozens of miRISC-associated proteins have been identified, and interactions between many factors have been examined in detail. However, the physical nature of the complex remains unknown. Here, we show that two core protein components of human miRISC, Argonaute2 (Ago2) and TNRC6B, condense into phase-separated droplets in vitro and in live cells. Phase separation is promoted by multivalent interactions between the glycine/tryptophan (GW)-rich domain of TNRC6B and three evenly spaced tryptophan-binding pockets in the Ago2 PIWI domain. miRISC droplets formed in vitro recruit deadenylation factors and sequester target RNAs from the bulk solution. The condensation of miRISC is accompanied by accelerated deadenylation of target RNAs bound to Ago2. The combined results may explain how miRISC silences mRNAs of varying size and structure and provide experimental evidence that protein-mediated phase separation can facilitate an RNA processing reaction.

Reviews - 6cbd mentioned but not cited (2)

  1. A Structural View of miRNA Biogenesis and Function. Leitão AL, Enguita FJ. Noncoding RNA 8 10 (2022)
  2. Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects. Johnson MB, Chandler M, Afonin KA. Adv Drug Deliv Rev 173 427-438 (2021)

Articles - 6cbd mentioned but not cited (2)

  1. Phase Transitions in the Assembly and Function of Human miRISC. Sheu-Gruttadauria J, MacRae IJ. Cell 173 946-957.e16 (2018)
  2. Multidomain Convergence of Argonaute during RISC Assembly Correlates with the Formation of Internal Water Clusters. Park MS, Araya-Secchi R, Brackbill JA, Phan HD, Kehling AC, Abd El-Wahab EW, Dayeh DM, Sotomayor M, Nakanishi K. Mol Cell 75 725-740.e6 (2019)


Reviews citing this publication (49)

  1. Regulation of microRNA function in animals. Gebert LFR, MacRae IJ. Nat Rev Mol Cell Biol 20 21-37 (2019)
  2. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Alberti S, Gladfelter A, Mittag T. Cell 176 419-434 (2019)
  3. A framework for understanding the functions of biomolecular condensates across scales. Lyon AS, Peeples WB, Rosen MK. Nat Rev Mol Cell Biol 22 215-235 (2021)
  4. Emerging Roles for Intermolecular RNA-RNA Interactions in RNP Assemblies. Van Treeck B, Parker R. Cell 174 791-802 (2018)
  5. MicroRNAs: From Mechanism to Organism. Dexheimer PJ, Cochella L. Front Cell Dev Biol 8 409 (2020)
  6. Biomolecular Condensates and Cancer. Boija A, Klein IA, Young RA. Cancer Cell 39 174-192 (2021)
  7. Liquid-liquid phase separation in human health and diseases. Wang B, Zhang L, Dai T, Qin Z, Lu H, Zhang L, Zhou F. Signal Transduct Target Ther 6 290 (2021)
  8. Structural and molecular mechanisms for the control of eukaryotic 5'-3' mRNA decay. Mugridge JS, Coller J, Gross JD. Nat Struct Mol Biol 25 1077-1085 (2018)
  9. It's not just a phase: function and characteristics of RNA-binding proteins in phase separation. Wiedner HJ, Giudice J, Giudice J. Nat Struct Mol Biol 28 465-473 (2021)
  10. Ciphers and Executioners: How 3'-Untranslated Regions Determine the Fate of Messenger RNAs. Mayya VK, Duchaine TF. Front Genet 10 6 (2019)
  11. Protein phase separation and its role in tumorigenesis. Jiang S, Fagman JB, Chen C, Alberti S, Liu B. Elife 9 e60264 (2020)
  12. Enhanced Inhibition of Tumorigenesis Using Combinations of miRNA-Targeted Therapeutics. Miroshnichenko S, Patutina O. Front Pharmacol 10 488 (2019)
  13. Reexamining assumptions about miRNA-guided gene silencing. Kilikevicius A, Meister G, Corey DR. Nucleic Acids Res 50 617-634 (2022)
  14. The role of liquid-liquid phase separation in regulating enzyme activity. O'Flynn BG, Mittag T. Curr Opin Cell Biol 69 70-79 (2021)
  15. Protein assembly systems in natural and synthetic biology. Chiesa G, Kiriakov S, Khalil AS. BMC Biol 18 35 (2020)
  16. Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology. Peng PH, Hsu KW, Wu KJ. Am J Cancer Res 11 3766-3776 (2021)
  17. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Santovito D, Weber C. Nat Rev Cardiol 19 620-638 (2022)
  18. Physical Chemistry of Cellular Liquid-Phase Separation. Bentley EP, Frey BB, Deniz AA. Chemistry 25 5600-5610 (2019)
  19. Anatomy of four human Argonaute proteins. Nakanishi K. Nucleic Acids Res 50 6618-6638 (2022)
  20. Subcellular Localization of miRNAs and Implications in Cellular Homeostasis. Jie M, Feng T, Huang W, Zhang M, Feng Y, Jiang H, Wen Z. Genes (Basel) 12 856 (2021)
  21. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates? Forman-Kay JD, Ditlev JA, Nosella ML, Lee HO. RNA 28 36-47 (2022)
  22. Liquid-liquid phase separation: a principal organizer of the cell's biochemical activity architecture. Zhang JZ, Mehta S, Zhang J. Trends Pharmacol Sci 42 845-856 (2021)
  23. Dissimilar Appearances Are Deceptive-Common microRNAs and Therapeutic Strategies in Liver Cancer and Melanoma. Linck-Paulus L, Hellerbrand C, Bosserhoff AK, Dietrich P. Cells 9 E114 (2020)
  24. Eukaryotic mRNA Decapping Activation. Vidya E, Duchaine TF. Front Genet 13 832547 (2022)
  25. Current Understanding of Molecular Phase Separation in Chromosomes. Ryu JK, Hwang DE, Choi JM. Int J Mol Sci 22 10736 (2021)
  26. Promotion or remission: a role of noncoding RNAs in colorectal cancer resistance to anti-EGFR therapy. Wei S, Hu W, Feng J, Geng Y. Cell Commun Signal 20 150 (2022)
  27. Autophagy Regulation by Crosstalk between miRNAs and Ubiquitination System. Qu J, Lin Z. Int J Mol Sci 22 11912 (2021)
  28. Facilitated diffusion of Argonaute-mediated target search. Cui TJ, Joo C. RNA Biol 16 1093-1107 (2019)
  29. Mechanism underlying circRNA dysregulation in the TME of digestive system cancer. Wu Z, Yu X, Zhang S, He Y, Guo W. Front Immunol 13 951561 (2022)
  30. MicroRNA: Could It Play a Role in Bovine Endometritis? Umar T, Yin B, Umer S, Ma X, Jiang K, Umar Z, Akhtar M, Shaukat A, Deng G. Inflammation 44 1683-1695 (2021)
  31. RNA granules: functional compartments or incidental condensates? Putnam A, Thomas L, Seydoux G. Genes Dev 37 354-376 (2023)
  32. The Multiplicity of Argonaute Complexes in Mammalian Cells. Mauro M, Berretta M, Palermo G, Palermo G, Cavalieri V, La Rocca G. J Pharmacol Exp Ther 384 1-9 (2023)
  33. Study liquid-liquid phase separation with optical microscopy: A methodology review. Zhang X, Li H, Ma Y, Zhong D, Hou S. APL Bioeng 7 021502 (2023)
  34. Noncoding RNAs in Drug Resistance of Gastrointestinal Stromal Tumor. Li J, Guo S, Sun Z, Fu Y. Front Cell Dev Biol 10 808591 (2022)
  35. The Influence of Host miRNA Binding to RNA Within RNA Viruses on Virus Multiplication. Lei L, Cheng A, Wang M, Jia R. Front Cell Infect Microbiol 12 802149 (2022)
  36. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. MedComm (2020) 4 e223 (2023)
  37. Challenging Cellular Homeostasis: Spatial and Temporal Regulation of miRNAs. van Wijk N, Zohar K, Linial M. Int J Mol Sci 23 16152 (2022)
  38. Molecular mechanisms and cellular functions of liquid-liquid phase separation during antiviral immune responses. Yang S, Shen W, Hu J, Cai S, Zhang C, Jin S, Guan X, Wu J, Wu Y, Cui J. Front Immunol 14 1162211 (2023)
  39. Phase-separation: a possible new layer for transcriptional regulation by glucocorticoid receptor. Pinheiro EDS, Preato AM, Petrucci TVB, Dos Santos LS, Glezer I. Front Endocrinol (Lausanne) 14 1160238 (2023)
  40. Recent progress in miRNA biogenesis and decay. Bofill-De Ros X, Vang Ørom UA. RNA Biol 21 1-8 (2024)
  41. Sequence variations of phase-separating proteins and resources for studying biomolecular condensates. Guo G, Wang X, Zhang Y, Li T. Acta Biochim Biophys Sin (Shanghai) 55 1119-1132 (2023)
  42. When Argonaute takes out the ribonuclease sword. Nakanishi K. J Biol Chem 300 105499 (2024)
  43. Advances in understanding effects of miRNAs on apoptosis, autophagy, and pyroptosis in knee osteoarthritis. An F, Sun B, Liu Y, Wang C, Wang X, Wang J, Liu Y, Yan C. Mol Genet Genomics 298 1261-1278 (2023)
  44. Biomolecular Liquid-Liquid Phase Separation for Biotechnology. Shil S, Tsuruta M, Kawauchi K, Miyoshi D. BioTech (Basel) 12 26 (2023)
  45. Biomolecular condensates in plant RNA silencing: insights into formation, function, and stress responses. Li Q, Liu Y, Zhang X. Plant Cell 36 227-245 (2024)
  46. Liquid-liquid phase separation in plants: Advances and perspectives from model species to crops. Liu Q, Liu W, Niu Y, Wang T, Dong J. Plant Commun 5 100663 (2024)
  47. Phase Separation in Kidney Diseases: Autosomal Dominant Polycystic Kidney Disease and Beyond. Zhang L, Liu Z, Lu Y, Nie J, Chen Y. Kidney Dis (Basel) 9 229-238 (2023)
  48. The Importance of Selected Dysregulated microRNAs in Diagnosis and Prognosis of Childhood B-Cell Precursor Acute Lymphoblastic Leukemia. Ziętara KJ, Lejman J, Wojciechowska K, Lejman M. Cancers (Basel) 15 428 (2023)
  49. Utilizing functional cell-free extracts to dissect ribonucleoprotein complex biology at single-molecule resolution. Duran E, Schmidt A, Welty R, Jalihal AP, Pitchiaya S, Walter NG. Wiley Interdiscip Rev RNA 14 e1787 (2023)

Articles citing this publication (68)

  1. Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome. Shin Y, Chang YC, Lee DSW, Berry J, Sanders DW, Ronceray P, Wingreen NS, Haataja M, Brangwynne CP. Cell 175 1481-1491.e13 (2018)
  2. Cancer Mutations of the Tumor Suppressor SPOP Disrupt the Formation of Active, Phase-Separated Compartments. Bouchard JJ, Otero JH, Scott DC, Szulc E, Martin EW, Sabri N, Granata D, Marzahn MR, Lindorff-Larsen K, Salvatella X, Schulman BA, Mittag T. Mol Cell 72 19-36.e8 (2018)
  3. The Eukaryotic Linear Motif resource: 2022 release. Kumar M, Michael S, Alvarado-Valverde J, Mészáros B, Sámano-Sánchez H, Zeke A, Dobson L, Lazar T, Örd M, Nagpal A, Farahi N, Käser M, Kraleti R, Davey NE, Pancsa R, Chemes LB, Gibson TJ. Nucleic Acids Res 50 D497-D508 (2022)
  4. PhaSePro: the database of proteins driving liquid-liquid phase separation. Mészáros B, Erdős G, Szabó B, Schád É, Tantos Á, Abukhairan R, Horváth T, Murvai N, Kovács OP, Kovács M, Tosatto SCE, Tompa P, Dosztányi Z, Pancsa R. Nucleic Acids Res 48 D360-D367 (2020)
  5. GIGYF2 and 4EHP Inhibit Translation Initiation of Defective Messenger RNAs to Assist Ribosome-Associated Quality Control. Hickey KL, Dickson K, Cogan JZ, Replogle JM, Schoof M, D'Orazio KN, Sinha NK, Hussmann JA, Jost M, Frost A, Green R, Weissman JS, Kostova KK. Mol Cell 79 950-962.e6 (2020)
  6. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Peeples W, Rosen MK. Nat Chem Biol 17 693-702 (2021)
  7. Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis. Xie D, Chen M, Niu J, Wang L, Li Y, Fang X, Li P, Qi Y. Nat Cell Biol 23 32-39 (2021)
  8. Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice. Schneider N, Wieland FG, Kong D, Fischer AAM, Hörner M, Timmer J, Ye H, Weber W. Sci Adv 7 eabd3568 (2021)
  9. Structural basis for piRNA targeting. Anzelon TA, Chowdhury S, Hughes SM, Xiao Y, Lander GC, MacRae IJ. Nature 597 285-289 (2021)
  10. Biomolecular condensates amplify mRNA decapping by biasing enzyme conformation. Tibble RW, Depaix A, Kowalska J, Jemielity J, Gross JD. Nat Chem Biol 17 615-623 (2021)
  11. DMA-tudor interaction modules control the specificity of in vivo condensates. Courchaine EM, Barentine AES, Straube K, Lee DR, Bewersdorf J, Neugebauer KM. Cell 184 3612-3625.e17 (2021)
  12. Valency and Binding Affinity Variations Can Regulate the Multilayered Organization of Protein Condensates with Many Components. Sanchez-Burgos I, Espinosa JR, Joseph JA, Collepardo-Guevara R. Biomolecules 11 278 (2021)
  13. Interaction hot spots for phase separation revealed by NMR studies of a CAPRIN1 condensed phase. Kim TH, Payliss BJ, Nosella ML, Lee ITW, Toyama Y, Forman-Kay JD, Kay LE. Proc Natl Acad Sci U S A 118 e2104897118 (2021)
  14. The biochemical basis for the cooperative action of microRNAs. Briskin D, Wang PY, Bartel DP. Proc Natl Acad Sci U S A 117 17764-17774 (2020)
  15. Genetic variation associated with condensate dysregulation in disease. Banani SF, Afeyan LK, Hawken SW, Henninger JE, Dall'Agnese A, Clark VE, Platt JM, Oksuz O, Hannett NM, Sagi I, Lee TI, Young RA. Dev Cell 57 1776-1788.e8 (2022)
  16. Long Noncoding RNA DCST1-AS1 Promotes Cell Proliferation and Metastasis in Triple-negative Breast Cancer by Forming a Positive Regulatory Loop with miR-873-5p and MYC. Tang L, Chen Y, Tang X, Wei D, Xu X, Yan F. J Cancer 11 311-323 (2020)
  17. 'RNA modulation of transport properties and stability in phase-separated condensates. Tejedor AR, Garaizar A, Ramírez J, Espinosa JR. Biophys J 120 5169-5186 (2021)
  18. Integration of Data from Liquid-Liquid Phase Separation Databases Highlights Concentration and Dosage Sensitivity of LLPS Drivers. Farahi N, Lazar T, Wodak SJ, Tompa P, Pancsa R. Int J Mol Sci 22 3017 (2021)
  19. The SH3 domain of Fyn kinase interacts with and induces liquid-liquid phase separation of the low-complexity domain of hnRNPA2. Amaya J, Ryan VH, Fawzi NL. J Biol Chem 293 19522-19531 (2018)
  20. YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation. Li J, Chen K, Dong X, Xu Y, Sun Q, Wang H, Chen Z, Liu C, Liu R, Yang Z, Mei X, Zhang R, Chang L, Tian Z, Chen J, Liang K, He C, Luo M. Cell Prolif 55 e13157 (2022)
  21. Computational resources for identifying and describing proteins driving liquid-liquid phase separation. Pancsa R, Vranken W, Mészáros B. Brief Bioinform 22 bbaa408 (2021)
  22. Receptor tyrosine kinases regulate signal transduction through a liquid-liquid phase separated state. Lin CC, Suen KM, Jeffrey PA, Wieteska L, Lidster JA, Bao P, Curd AP, Stainthorp A, Seiler C, Koss H, Miska E, Ahmed Z, Evans SD, Molina-París C, Ladbury JE. Mol Cell 82 1089-1106.e12 (2022)
  23. KSHV RNA-binding protein ORF57 inhibits P-body formation to promote viral multiplication by interaction with Ago2 and GW182. Sharma NR, Majerciak V, Kruhlak MJ, Yu L, Kang JG, Yang A, Gu S, Fritzler MJ, Zheng ZM. Nucleic Acids Res 47 9368-9385 (2019)
  24. Hypoxia regulates overall mRNA homeostasis by inducing Met1-linked linear ubiquitination of AGO2 in cancer cells. Zhang H, Zhao X, Guo Y, Chen R, He J, Li L, Qiang Z, Yang Q, Liu X, Huang C, Lu R, Fang J, Cao Y, Huang J, Wang Y, Huang J, Chen GQ, Cheng J, Yu J. Nat Commun 12 5416 (2021)
  25. Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. La Rocca G, King B, Shui B, Li X, Zhang M, Akat KM, Ogrodowski P, Mastroleo C, Chen K, Cavalieri V, Ma Y, Anelli V, Betel D, Vidigal J, Tuschl T, Meister G, Thompson CB, Lindsten T, Haigis K, Ventura A. Elife 10 e70948 (2021)
  26. MicroRNA 122 Affects both the Initiation and the Maintenance of Hepatitis C Virus Infections. Panigrahi M, Thibault PA, Wilson JA. J Virol 96 e0190321 (2022)
  27. ALS-linked KIF5A ΔExon27 mutant causes neuronal toxicity through gain-of-function. Pant DC, Parameswaran J, Rao L, Loss I, Chilukuri G, Parlato R, Shi L, Glass JD, Bassell GJ, Koch P, Yilmaz R, Weishaupt JH, Gennerich A, Jiang J. EMBO Rep 23 e54234 (2022)
  28. Engineered Ribonucleoprotein Granules Inhibit Translation in Protocells. Simon JR, Eghtesadi SA, Dzuricky M, You L, Chilkoti A. Mol Cell 75 66-75.e5 (2019)
  29. MicroRNA-1182 and let-7a exert synergistic inhibition on invasion, migration and autophagy of cholangiocarcinoma cells through down-regulation of NUAK1. Pan X, Wang G, Wang B. Cancer Cell Int 21 161 (2021)
  30. Imaging translational control by Argonaute with single-molecule resolution in live cells. Cialek CA, Galindo G, Morisaki T, Zhao N, Montgomery TA, Stasevich TJ. Nat Commun 13 3345 (2022)
  31. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. Sanchez-Burgos I, Espinosa JR, Joseph JA, Collepardo-Guevara R. PLoS Comput Biol 18 e1009810 (2022)
  32. Signaling by the integrated stress response kinase PKR is fine-tuned by dynamic clustering. Zappa F, Muniozguren NL, Wilson MZ, Costello MS, Ponce-Rojas JC, Acosta-Alvear D. J Cell Biol 221 e202111100 (2022)
  33. The Requirement for GW182 Scaffolding Protein Depends on Whether Argonaute Is Mediating Translation, Transcription, or Splicing. Liu J, Liu Z, Corey DR. Biochemistry 57 5247-5256 (2018)
  34. Quantitative reconstitution of yeast RNA processing bodies. Currie SL, Xing W, Muhlrad D, Decker CJ, Parker R, Rosen MK. Proc Natl Acad Sci U S A 120 e2214064120 (2023)
  35. TNRC6 proteins modulate hepatitis C virus replication by spatially regulating the binding of miR-122/Ago2 complexes to viral RNA. Li Y, Wang L, Rivera-Serrano EE, Chen X, Lemon SM. Nucleic Acids Res 47 6411-6424 (2019)
  36. Expression of TNRC6 (GW182) Proteins Is Not Necessary for Gene Silencing by Fully Complementary RNA Duplexes. Liu Z, Johnson ST, Zhang Z, Corey DR. Nucleic Acid Ther 29 323-334 (2019)
  37. DEPS-1 is required for piRNA-dependent silencing and PIWI condensate organisation in Caenorhabditis elegans. Suen KM, Braukmann F, Butler R, Bensaddek D, Akay A, Lin CC, Milonaitytė D, Doshi N, Sapetschnig A, Lamond A, Ladbury JE, Miska EA. Nat Commun 11 4242 (2020)
  38. Hypoxia-induced circADAMTS6 in a TDP43-dependent manner accelerates glioblastoma progression via ANXA2/ NF-κB pathway. Zhao S, Li B, Zhao R, Pan Z, Zhang S, Qiu W, Guo Q, Qi Y, Gao Z, Fan Y, Xu H, Li M, Zhang J, Wang H, Xu J, Wang S, Wang Q, Qiu J, Deng L, Guo X, Zhang P, Xue H, Li G. Oncogene 42 138-153 (2023)
  39. Dual miRNases for Triple Incision of miRNA Target: Design Concept and Catalytic Performance. Patutina O, Chiglintseva D, Bichenkova E, Gaponova S, Mironova N, Vlassov V, Zenkova M. Molecules 25 E2459 (2020)
  40. Small RNA expression and miRNA modification dynamics in human oocytes and early embryos. Paloviita P, Hydén-Granskog C, Yohannes DA, Paluoja P, Kere J, Tapanainen JS, Krjutškov K, Tuuri T, Võsa U, Vuoristo S. Genome Res 31 1474-1485 (2021)
  41. ceRNA crosstalk mediated by ncRNAs is a novel regulatory mechanism in fish sex determination and differentiation. Tang L, Huang F, You W, Poetsch A, Nóbrega RH, Power DM, Zhu T, Liu K, Wang HY, Wang Q, Xu X, Feng B, Schartl M, Shao C. Genome Res (2022)
  42. Chemical Kinetics and Mass Action in Coexisting Phases. Bauermann J, Laha S, McCall PM, Jülicher F, Weber CA. J Am Chem Soc 144 19294-19304 (2022)
  43. PABPN1 functions as a hub in the assembly of nuclear poly(A) domains that are essential for mouse oocyte development. Dai XX, Pi SB, Zhao LW, Wu YW, Shen JL, Zhang SY, Sha QQ, Fan HY. Sci Adv 8 eabn9016 (2022)
  44. RNA binding proteins Smaug and Cup induce CCR4-NOT-dependent deadenylation of the nanos mRNA in a reconstituted system. Pekovic F, Rammelt C, Kubíková J, Metz J, Jeske M, Wahle E. Nucleic Acids Res 51 3950-3970 (2023)
  45. The Co-Chaperone HspBP1 Is a Novel Component of Stress Granules that Regulates Their Formation. Mahboubi H, Moujaber O, Kodiha M, Stochaj U. Cells 9 E825 (2020)
  46. The return of the rings: Evolutionary convergence of aromatic residues in the intrinsically disordered regions of RNA-binding proteins for liquid-liquid phase separation. Ho WL, Huang JR. Protein Sci 31 e4317 (2022)
  47. Protein quality and miRNA slicing get into phase. Mittag T, Fawzi NL. Nat Cell Biol 20 635-637 (2018)
  48. Effects of the PIWI/MID domain of Argonaute protein on the association of miRNAi's seed base with the target. Wang Z, Wang Y, Liu T, Wang Y, Zhang W. RNA 25 620-629 (2019)
  49. Elucidating the distinct contributions of miR-122 in the HCV life cycle reveals insights into virion assembly. Rheault M, Cousineau SE, Fox DR, Abram QH, Sagan SM. Nucleic Acids Res 51 2447-2463 (2023)
  50. Mechanisms of phase-separation-mediated cGAS activation revealed by dcFCCS. Yao Y, Wang W, Chen C. PNAS Nexus 1 pgac109 (2022)
  51. Time-Dependent Material Properties of Aging Biomolecular Condensates from Different Viscoelasticity Measurements in Molecular Dynamics Simulations. Tejedor AR, Collepardo-Guevara R, Ramírez J, Espinosa JR. J Phys Chem B 127 4441-4459 (2023)
  52. A tiny loop in the Argonaute PIWI domain tunes small RNA seed strength. Xiao Y, Liu TM, MacRae IJ. EMBO Rep 24 e55806 (2023)
  53. Innate Immune Memory in Macrophages. Maheshwari A. Newborn (Clarksville) 2 60-79 (2023)
  54. News Recent trends in studies of biomolecular phase separation. Kim CG, Hwang DE, Kumar R, Chung M, Eom YG, Kim H, Koo DH, Choi JM. BMB Rep 55 363-369 (2022)
  55. Aberrant expression of circular RNA DHPR facilitates tumor growth and metastasis by regulating the RASGEF1B/RAS/MAPK axis in hepatocellular carcinoma. Guo Z, Xie Q, Wu Y, Mo H, Zhang J, He G, Li Z, Gan L, Feng L, Li T, Wang Y, Fu Y, Cai L, Li S, Yu C, Gao Y, Pan M, Fu S. Cell Oncol (Dordr) 46 1333-1350 (2023)
  56. Bulge-Forming miRNases Cleave Oncogenic miRNAs at the Central Loop Region in a Sequence-Specific Manner. Patutina O, Chiglintseva D, Amirloo B, Clarke D, Gaponova S, Vlassov V, Bichenkova E, Zenkova M. Int J Mol Sci 23 6562 (2022)
  57. CiRS-7 Enhances the Liquid-liquid Phase Separation of miRISC and Promotes DNA Damage Repair. Wang YL, Feng LL, Shi J, Chen WY, Bie SY, Bai SM, Zeng GD, Wang RZ, Zheng J, Wan XB, Fan XJ. Nucleus 14 2293599 (2023)
  58. IFF: Identifying key residues in intrinsically disordered regions of proteins using machine learning. Ho WL, Huang HC, Huang JR. Protein Sci 32 e4739 (2023)
  59. MOV10 recruits DCP2 to decap human LINE-1 RNA by forming large cytoplasmic granules with phase separation properties. Liu Q, Yi D, Ding J, Mao Y, Wang S, Ma L, Li Q, Wang J, Zhang Y, Zhao J, Guo S, Liu Z, Guo F, Zhao D, Liang C, Li X, Peng X, Cen S. EMBO Rep 24 e56512 (2023)
  60. MiR-490-3p Silences CDK1 and Inhibits the Proliferation of Colon Cancer Through an LLPS-Dependent miRISC System. Qin D, Wei R, Zhu S, Min L, Zhang S. Front Mol Biosci 8 561678 (2021)
  61. Letter The phase separation of SGS3 regulates antiviral immunity and fertility in Arabidopsis. Han Y, Zhang X, Du R, Shan X, Xie D. Sci China Life Sci 66 1938-1941 (2023)
  62. Tumor suppressor miR-449a inhibits the development of gastric cancer via down-regulation of SGPL1. Chen Q, Yang Z, Pan G, Ding H, Jiang D, Huang J, Liu W, Liu W. RSC Adv 8 26020-26028 (2018)
  63. Altered splicing factor and alternative splicing events in a mouse model of diet- and polychlorinated biphenyl-induced liver disease. Petri BJ, Piell KM, Wahlang B, Head KZ, Rouchka EC, Park JW, Hwang JY, Banerjee M, Cave MC, Klinge CM. Environ Toxicol Pharmacol 103 104260 (2023)
  64. Construction of multiphasic membraneless organelles towards spontaneous spatial segregation and directional flow of biochemical reactions. Zhorabek F, Abesekara MS, Liu J, Dai X, Huang J, Chau Y. Chem Sci 14 801-811 (2023)
  65. Diversity of hydrodynamic radii of intrinsically disordered proteins. Białobrzewski MK, Klepka BP, Michaś A, Cieplak-Rotowska MK, Staszałek Z, Niedźwiecka A. Eur Biophys J 52 607-618 (2023)
  66. Regulation of microRNA expression by the adaptor protein GRB2. Stainthorp AK, Lin CC, Wang D, Medhi R, Ahmed Z, Suen KM, Miska EA, Whitehouse A, Ladbury JE. Sci Rep 13 9784 (2023)
  67. Silencing drops. Mirabella A. Nat Rev Mol Cell Biol 19 347 (2018)
  68. Single-cell sequencing and transcriptome analyses in the construction of a liquid-liquid phase separation-associated gene model for rheumatoid arthritis. Tai J, Wang L, Yan Z, Liu J. Front Genet 14 1210722 (2023)