6gtd Citations

Conformational Activation Promotes CRISPR-Cas12a Catalysis and Resetting of the Endonuclease Activity.

Cell 175 1856-1871.e21 (2018)
Related entries: 6gtc, 6gte, 6gtf, 6gtg

Cited: 94 times
EuropePMC logo PMID: 30503205

Abstract

Cas12a, also known as Cpf1, is a type V-A CRISPR-Cas RNA-guided endonuclease that is used for genome editing based on its ability to generate specific dsDNA breaks. Here, we show cryo-EM structures of intermediates of the cleavage reaction, thus visualizing three protein regions that sense the crRNA-DNA hybrid assembly triggering the catalytic activation of Cas12a. Single-molecule FRET provides the thermodynamics and kinetics of the conformational activation leading to phosphodiester bond hydrolysis. These findings illustrate why Cas12a cuts its target DNA and unleashes unspecific cleavage activity, degrading ssDNA molecules after activation. In addition, we show that other crRNAs are able to displace the R-loop inside the protein after target DNA cleavage, terminating indiscriminate ssDNA degradation. We propose a model whereby the conformational activation of the enzyme results in indiscriminate ssDNA cleavage. The displacement of the R-loop by a new crRNA molecule will reset Cas12a specificity, targeting new DNAs.

Reviews citing this publication (16)

  1. Challenges and opportunities in cryo-EM single-particle analysis. Lyumkis D. J Biol Chem 294 5181-5197 (2019)
  2. CRISPR-Cas12a: Functional overview and applications. Paul B, Montoya G. Biomed J 43 8-17 (2020)
  3. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CA, Weiss S. Elife 10 e60416 (2021)
  4. Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression. Wiegand T, Karambelkar S, Bondy-Denomy J, Wiedenheft B. Annu Rev Microbiol 74 21-37 (2020)
  5. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Wang JY, Pausch P, Doudna JA. Nat Rev Microbiol 20 641-656 (2022)
  6. Alternative functions of CRISPR-Cas systems in the evolutionary arms race. Mohanraju P, Saha C, van Baarlen P, Louwen R, Staals RHJ, van der Oost J. Nat Rev Microbiol 20 351-364 (2022)
  7. Three New Cs for CRISPR: Collateral, Communicate, Cooperate. Varble A, Marraffini LA. Trends Genet 35 446-456 (2019)
  8. Tools for visualizing and analyzing Fourier space sampling in Cryo-EM. Baldwin PR, Lyumkis D. Prog Biophys Mol Biol 160 53-65 (2021)
  9. Programmable Biosensors Based on RNA-Guided CRISPR/Cas Endonuclease. Liu X, Hussain M, Dai J, Li Y, Zhang L, Yang J, Ali Z, He N, Tang Y. Biol Proced Online 24 2 (2022)
  10. Recent Advances in CRISPR/Cas-Based Biosensors for Protein Detection. Wang J, Yang X, Wang X, Wang W. Bioengineering (Basel) 9 512 (2022)
  11. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Hussen BM, Rasul MF, Abdullah SR, Hidayat HJ, Faraj GSH, Ali FA, Salihi A, Baniahmad A, Ghafouri-Fard S, Rahman M, Glassy MC, Branicki W, Taheri M. Mil Med Res 10 32 (2023)
  12. The CRISPR/Cas System: A Customizable Toolbox for Molecular Detection. He Y, Yan W, Long L, Dong L, Ma Y, Li C, Xie Y, Liu N, Xing Z, Xia W, Li F. Genes (Basel) 14 850 (2023)
  13. Types I and V Anti-CRISPR Proteins: From Phage Defense to Eukaryotic Synthetic Gene Circuits. Yu L, Marchisio MA. Front Bioeng Biotechnol 8 575393 (2020)
  14. Miniature CRISPR-Cas12 endonucleases - Programmed DNA targeting in a smaller package. Nguyen GT, Dhingra Y, Sashital DG. Curr Opin Struct Biol 77 102466 (2022)
  15. Structural principles of CRISPR-Cas enzymes used in nucleic acid detection. Das A, Goswami HN, Whyms CT, Sridhara S, Li H. J Struct Biol 214 107838 (2022)
  16. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Zeng S, Lei S, Qu C, Wang Y, Teng S, Huang P. Hum Genet 142 1677-1703 (2023)

Articles citing this publication (78)