6j5v Citations

Ligand-triggered allosteric ADP release primes a plant NLR complex.

Science 364 (2019)
Related entries: 6j5u, 6j5w

Cited: 153 times
EuropePMC logo PMID: 30948526

Abstract

Pathogen recognition by nucleotide-binding (NB), leucine-rich repeat (LRR) receptors (NLRs) plays roles in plant immunity. The Xanthomonas campestris pv. campestris effector AvrAC uridylylates the Arabidopsis PBL2 kinase, and the latter (PBL2UMP) acts as a ligand to activate the NLR ZAR1 precomplexed with the RKS1 pseudokinase. Here we report the cryo-electron microscopy structures of ZAR1-RKS1 and ZAR1-RKS1-PBL2UMP in an inactive and intermediate state, respectively. The ZAR1LRR domain, compared with animal NLRLRR domains, is differently positioned to sequester ZAR1 in an inactive state. Recognition of PBL2UMP is exclusively through RKS1, which interacts with ZAR1LRR PBL2UMP binding stabilizes the RKS1 activation segment, which sterically blocks ZAR1 adenosine diphosphate (ADP) binding. This engenders a more flexible NB domain without conformational changes in the other ZAR1 domains. Our study provides a structural template for understanding plant NLRs.

Reviews - 6j5v mentioned but not cited (3)

  1. A molecular roadmap to the plant immune system. Bentham AR, De la Concepcion JC, Mukhi N, Zdrzałek R, Draeger M, Gorenkin D, Hughes RK, Banfield MJ. J Biol Chem 295 14916-14935 (2020)
  2. There's more to death than life: Noncatalytic functions in kinase and pseudokinase signaling. Mace PD, Murphy JM. J Biol Chem 296 100705 (2021)
  3. Molecular insights into the biochemical functions and signalling mechanisms of plant NLRs. Liu X, Wan L. Mol Plant Pathol 23 772-780 (2022)

Articles - 6j5v mentioned but not cited (2)

  1. Perturbations of the ZED1 pseudokinase activate plant immunity. Bastedo DP, Khan M, Martel A, Seto D, Kireeva I, Zhang J, Masud W, Millar D, Lee JY, Lee AH, Gong Y, Santos-Severino A, Guttman DS, Desveaux D. PLoS Pathog 15 e1007900 (2019)
  2. A dominant-negative avirulence effector of the barley powdery mildew fungus provides mechanistic insight into barley MLA immune receptor activation. Crean EE, Bilstein-Schloemer M, Maekawa T, Schulze-Lefert P, Saur IML. J Exp Bot 74 5854-5869 (2023)


Reviews citing this publication (55)

  1. The plant hypersensitive response: concepts, control and consequences. Balint-Kurti P. Mol Plant Pathol 20 1163-1178 (2019)
  2. Plant NLR-triggered immunity: from receptor activation to downstream signaling. Lolle S, Stevens D, Coaker G. Curr Opin Immunol 62 99-105 (2020)
  3. Genetic modification to improve disease resistance in crops. van Esse HP, Reuber TL, van der Does D. New Phytol 225 70-86 (2020)
  4. Thirty years of resistance: Zig-zag through the plant immune system. Ngou BPM, Ding P, Jones JDG. Plant Cell 34 1447-1478 (2022)
  5. Plant NLRs: The Whistleblowers of Plant Immunity. van Wersch S, Tian L, Hoy R, Li X. Plant Commun 1 100016 (2020)
  6. Modulation of Plant Defense System in Response to Microbial Interactions. Nishad R, Ahmed T, Rahman VJ, Kareem A. Front Microbiol 11 1298 (2020)
  7. Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. Zhang J, Coaker G, Zhou JM, Dong X. Mol Plant 13 1358-1378 (2020)
  8. NOD-like receptor-mediated plant immunity: from structure to cell death. Saur IML, Panstruga R, Schulze-Lefert P. Nat Rev Immunol 21 305-318 (2021)
  9. Plant NLR diversity: the known unknowns of pan-NLRomes. Barragan AC, Weigel D. Plant Cell 33 814-831 (2021)
  10. A holistic view on plant effector-triggered immunity presented as an iceberg model. Thordal-Christensen H. Cell Mol Life Sci 77 3963-3976 (2020)
  11. Cell Death in Plant Immunity. Pitsili E, Phukan UJ, Coll NS. Cold Spring Harb Perspect Biol 12 a036483 (2020)
  12. Developments, applications, and prospects of cryo-electron microscopy. Benjin X, Ling L. Protein Sci 29 872-882 (2020)
  13. Plant Molecular Responses to Potato Virus Y: A Continuum of Outcomes from Sensitivity and Tolerance to Resistance. Baebler Š, Coll A, Gruden K. Viruses 12 E217 (2020)
  14. Proteomics of Rice-Magnaporthe oryzae Interaction: What Have We Learned So Far? Meng Q, Gupta R, Min CW, Kwon SW, Wang Y, Je BI, Kim YJ, Jeon JS, Agrawal GK, Rakwal R, Kim ST. Front Plant Sci 10 1383 (2019)
  15. Structural Insights into the Plant Immune Receptors PRRs and NLRs. Wang J, Chai J. Plant Physiol 182 1566-1581 (2020)
  16. Structural basis of NLR activation and innate immune signalling in plants. Maruta N, Burdett H, Lim BYJ, Hu X, Desa S, Manik MK, Kobe B. Immunogenetics 74 5-26 (2022)
  17. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Schreiber KJ, Chau-Ly IJ, Lewis JD. Microorganisms 9 1029 (2021)
  18. Ca2+ signals in plant immunity. Köster P, DeFalco TA, Zipfel C. EMBO J 41 e110741 (2022)
  19. Enzymatic Functions for Toll/Interleukin-1 Receptor Domain Proteins in the Plant Immune System. Bayless AM, Nishimura MT. Front Genet 11 539 (2020)
  20. Perspectives on intracellular perception of plant viruses. Meier N, Hatch C, Nagalakshmi U, Dinesh-Kumar SP. Mol Plant Pathol 20 1185-1190 (2019)
  21. Malectin-like receptor kinases as protector deities in plant immunity. Ortiz-Morea FA, Liu J, Shan L, He P. Nat Plants 8 27-37 (2022)
  22. Molecular actions of NLR immune receptors in plants and animals. Wang J, Chai J. Sci China Life Sci 63 1303-1316 (2020)
  23. A tale of many families: calcium channels in plant immunity. Xu G, Moeder W, Yoshioka K, Shan L. Plant Cell 34 1551-1567 (2022)
  24. Molecular and Cellular Mechanisms Involved in Host-Specific Resistance to Cyst Nematodes in Crops. Zheng Q, Putker V, Goverse A. Front Plant Sci 12 641582 (2021)
  25. From Player to Pawn: Viral Avirulence Factors Involved in Plant Immunity. Huang C. Viruses 13 688 (2021)
  26. Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. Calvo-Baltanás V, Wang J, Chae E. Front Plant Sci 11 576796 (2020)
  27. Extreme Resistance to Viruses in Potato and Soybean. Ross BT, Zidack NK, Flenniken ML. Front Plant Sci 12 658981 (2021)
  28. Cross Kingdom Immunity: The Role of Immune Receptors and Downstream Signaling in Animal and Plant Cell Death. Roudaire T, Héloir MC, Wendehenne D, Zadoroznyj A, Dubrez L, Poinssot B. Front Immunol 11 612452 (2020)
  29. Tandem Protein Kinases Emerge as New Regulators of Plant Immunity. Klymiuk V, Coaker G, Fahima T, Pozniak CJ. Mol Plant Microbe Interact 34 1094-1102 (2021)
  30. Life-or-death decisions in plant immunity. Zhang X, Dong X. Curr Opin Immunol 75 102169 (2022)
  31. Regulation of Plant Immunity by Nuclear Membrane-Associated Mechanisms. Fang Y, Gu Y. Front Immunol 12 771065 (2021)
  32. Roles of small RNAs in crop disease resistance. Tang J, Gu X, Liu J, He Z. Stress Biol 1 6 (2021)
  33. A Glimpse of Programmed Cell Death Among Bacteria, Animals, and Plants. Zhuang J, Xie L, Zheng L. Front Cell Dev Biol 9 790117 (2021)
  34. Calcium channels and transporters: Roles in response to biotic and abiotic stresses. Park CJ, Shin R. Front Plant Sci 13 964059 (2022)
  35. Direct recognition of pathogen effectors by plant NLR immune receptors and downstream signalling. Chen J, Zhang X, Rathjen JP, Dodds PN. Essays Biochem 66 471-483 (2022)
  36. How activated NLRs induce anti-microbial defenses in plants. El Kasmi F. Biochem Soc Trans 49 2177-2188 (2021)
  37. NLR receptors in plant immunity: making sense of the alphabet soup. Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. EMBO Rep 24 e57495 (2023)
  38. Recent advances in developing disease resistance in plants. Sharma A, Jones JB, White FF. F1000Res 8 F1000 Faculty Rev-1934 (2019)
  39. Puccinia striiformis f. sp. tritici effectors in wheat immune responses. Wu N, Ozketen AC, Cheng Y, Jiang W, Zhou X, Zhao X, Guan Y, Xiang Z, Akkaya MS. Front Plant Sci 13 1012216 (2022)
  40. An Overview of PRR- and NLR-Mediated Immunities: Conserved Signaling Components across the Plant Kingdom That Communicate Both Pathways. Ramírez-Zavaleta CY, García-Barrera LJ, Rodríguez-Verástegui LL, Arrieta-Flores D, Gregorio-Jorge J. Int J Mol Sci 23 12974 (2022)
  41. Contribution of Duplicated Nucleotide-Binding Leucine-Rich Repeat (NLR) Genes to Wheat Disease Resistance. Hao Y, Pan Y, Chen W, Rashid MAR, Li M, Che N, Duan X, Zhao Y. Plants (Basel) 12 2794 (2023)
  42. Distinct Responses to Pathogenic and Symbionic Microorganisms: The Role of Plant Immunity. Ji L, Yang X, Qi F. Int J Mol Sci 23 10427 (2022)
  43. Dying in self-defence: a comparative overview of immunogenic cell death signalling in animals and plants. Maekawa T, Kashkar H, Coll NS. Cell Death Differ 30 258-268 (2023)
  44. Insight into the structure and molecular mode of action of plant paired NLR immune receptors. Xi Y, Cesari S, Kroj T. Essays Biochem 66 513-526 (2022)
  45. Molecular basis for host responses to Xanthomonas infection. Cardoso JLS, Souza AA, Vieira MLC. Planta 256 84 (2022)
  46. NLR immune receptors: structure and function in plant disease resistance. Förderer A, Kourelis J. Biochem Soc Trans 51 1473-1483 (2023)
  47. NLR- and mlo-Based Resistance Mechanisms against Powdery Mildew in Cannabis sativa. Sirangelo TM. Plants (Basel) 13 105 (2023)
  48. Plant NLRs: Evolving with pathogen effectors and engineerable to improve resistance. Zhang B, Liu M, Wang Y, Yuan W, Zhang H. Front Microbiol 13 1018504 (2022)
  49. Regulation of plant responses to biotic and abiotic stress by receptor-like cytoplasmic kinases. Liang X, Zhang J. Stress Biol 2 25 (2022)
  50. Research Progress and Prospect of Alfalfa Resistance to Pathogens and Pests. Yang B, Zhao Y, Guo Z. Plants (Basel) 11 2008 (2022)
  51. Role of the Sw5 Gene Cluster in the Fight against Plant Viruses. Sharma N, Prasad A, Prasad M. J Virol 96 e0208421 (2022)
  52. Signaling and Resistosome Formation in Plant Innate Immunity to Viruses: Is There a Common Mechanism of Antiviral Resistance Conserved across Kingdoms? Ivanov PA, Gasanova TV, Repina MN, Zamyatnin AA. Int J Mol Sci 24 13625 (2023)
  53. Structural mechanism of heavy metal-associated integrated domain engineering of paired nucleotide-binding and leucine-rich repeat proteins in rice. Guo L, Mu Y, Wang D, Ye C, Zhu S, Cai H, Zhu Y, Peng Y, Liu J, He X. Front Plant Sci 14 1187372 (2023)
  54. Unmasking the invaders: NLR-mal function in plant defense. Anbu S, Swart V, van den Berg N. Front Plant Sci 14 1307294 (2023)
  55. ZAR1: Guardian of plant kinases. Breit-McNally C, Laflamme B, Singh RA, Desveaux D, Guttman DS. Front Plant Sci 13 981684 (2022)

Articles citing this publication (93)

  1. A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. Van de Weyer AL, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, Witek K, Jones JDG, Dangl JL, Weigel D, Bemm F. Cell 178 1260-1272.e14 (2019)
  2. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Martin R, Qi T, Zhang H, Liu F, King M, Toth C, Nogales E, Staskawicz BJ. Science 370 eabd9993 (2020)
  3. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. Adachi H, Contreras MP, Harant A, Wu CH, Derevnina L, Sakai T, Duggan C, Moratto E, Bozkurt TO, Maqbool A, Win J, Kamoun S. Elife 8 e49956 (2019)
  4. An EDS1-SAG101 Complex Is Essential for TNL-Mediated Immunity in Nicotiana benthamiana. Gantner J, Ordon J, Kretschmer C, Guerois R, Stuttmann J. Plant Cell 31 2456-2474 (2019)
  5. An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Wang H, Zou S, Li Y, Lin F, Tang D. Nat Commun 11 1353 (2020)
  6. The Lifecycle of the Plant Immune System. Li P, Lu YJ, Chen H, Day B. CRC Crit Rev Plant Sci 39 72-100 (2020)
  7. Two unequally redundant "helper" immune receptor families mediate Arabidopsis thaliana intracellular "sensor" immune receptor functions. Saile SC, Jacob P, Castel B, Jubic LM, Salas-Gonzáles I, Bäcker M, Jones JDG, Dangl JL, El Kasmi F. PLoS Biol 18 e3000783 (2020)
  8. Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites. Prigozhin DM, Krasileva KV. Plant Cell 33 998-1015 (2021)
  9. Induced proximity of a TIR signaling domain on a plant-mammalian NLR chimera activates defense in plants. Duxbury Z, Wang S, MacKenzie CI, Tenthorey JL, Zhang X, Huh SU, Hu L, Hill L, Ngou PM, Ding P, Chen J, Ma Y, Guo H, Castel B, Moschou PN, Bernoux M, Dodds PN, Vance RE, Jones JDG. Proc Natl Acad Sci U S A 117 18832-18839 (2020)
  10. LRRpredictor-A New LRR Motif Detection Method for Irregular Motifs of Plant NLR Proteins Using an Ensemble of Classifiers. Martin EC, Sukarta OCA, Spiridon L, Grigore LG, Constantinescu V, Tacutu R, Goverse A, Petrescu AJ. Genes (Basel) 11 E286 (2020)
  11. Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. Derevnina L, Contreras MP, Adachi H, Upson J, Vergara Cruces A, Xie R, Skłenar J, Menke FLH, Mugford ST, MacLean D, Ma W, Hogenhout SA, Goverse A, Maqbool A, Wu CH, Kamoun S. PLoS Biol 19 e3001136 (2021)
  12. Immunodiversity of the Arabidopsis ZAR1 NLR Is Conveyed by Receptor-Like Cytoplasmic Kinase Sensors. Martel A, Laflamme B, Seto D, Bastedo DP, Dillon MM, Almeida RND, Guttman DS, Desveaux D. Front Plant Sci 11 1290 (2020)
  13. The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19. Du D, Zhang C, Xing Y, Lu X, Cai L, Yun H, Zhang Q, Zhang Y, Chen X, Liu M, Sang X, Ling Y, Yang Z, Li Y, Lefebvre B, He G. Plant Biotechnol J 19 1052-1064 (2021)
  14. Dissection of Cell Death Induction by Wheat Stem Rust Resistance Protein Sr35 and Its Matching Effector AvrSr35. Bolus S, Akhunov E, Coaker G, Dubcovsky J. Mol Plant Microbe Interact 33 308-319 (2020)
  15. Genome-wide functional analysis of hot pepper immune receptors reveals an autonomous NLR clade in seed plants. Lee HY, Mang H, Choi E, Seo YE, Kim MS, Oh S, Kim SB, Choi D. New Phytol 229 532-547 (2021)
  16. New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain. Cesari S, Xi Y, Declerck N, Chalvon V, Mammri L, Pugnière M, Henriquet C, de Guillen K, Chochois V, Padilla A, Kroj T. Nat Commun 13 1524 (2022)
  17. Perception of structurally distinct effectors by the integrated WRKY domain of a plant immune receptor. Mukhi N, Brown H, Gorenkin D, Ding P, Bentham AR, Stevenson CEM, Jones JDG, Banfield MJ. Proc Natl Acad Sci U S A 118 e2113996118 (2021)
  18. Altering Specificity and Autoactivity of Plant Immune Receptors Sr33 and Sr50 Via a Rational Engineering Approach. Tamborski J, Seong K, Liu F, Staskawicz BJ, Krasileva KV. Mol Plant Microbe Interact 36 434-446 (2023)
  19. SUSA2 is an F-box protein required for autoimmunity mediated by paired NLRs SOC3-CHS1 and SOC3-TN2. Liang W, Tong M, Li X. Nat Commun 11 5190 (2020)
  20. Stepwise artificial evolution of an Sw-5b immune receptor extends its resistance spectrum against resistance-breaking isolates of Tomato spotted wilt virus. Huang H, Huang S, Li J, Wang H, Zhao Y, Feng M, Dai J, Wang T, Zhu M, Tao X. Plant Biotechnol J 19 2164-2176 (2021)
  21. The helper NLR immune protein NRC3 mediates the hypersensitive cell death caused by the cell-surface receptor Cf-4. Kourelis J, Contreras MP, Harant A, Pai H, Lüdke D, Adachi H, Derevnina L, Wu CH, Kamoun S. PLoS Genet 18 e1010414 (2022)
  22. A novel mode of DnaA-DnaA interaction promotes ADP dissociation for reactivation of replication initiation activity. Sugiyama R, Kasho K, Miyoshi K, Ozaki S, Kagawa W, Kurumizaka H, Katayama T. Nucleic Acids Res 47 11209-11224 (2019)
  23. Functional diversification gave rise to allelic specialization in a rice NLR immune receptor pair. De la Concepcion JC, Vega Benjumea J, Bialas A, Terauchi R, Kamoun S, Banfield MJ. Elife 10 e71662 (2021)
  24. Plant SYP12 syntaxins mediate an evolutionarily conserved general immunity to filamentous pathogens. Rubiato HM, Liu M, O'Connell RJ, Nielsen ME. Elife 11 e73487 (2022)
  25. RNA Interference-Based Screen Reveals Concerted Functions of MEKK2 and CRCK3 in Plant Cell Death Regulation. Yang Y, Liu J, Yin C, de Souza Vespoli L, Ge D, Huang Y, Feng B, Xu G, Manhães AMEA, Dou S, Criswell C, Shan L, Wang X, He P. Plant Physiol 183 331-344 (2020)
  26. Systematic Y2H Screening Reveals Extensive Effector-Complex Formation. Alcântara A, Bosch J, Nazari F, Hoffmann G, Gallei M, Uhse S, Darino MA, Olukayode T, Reumann D, Baggaley L, Djamei A. Front Plant Sci 10 1437 (2019)
  27. A gain of function mutation in SlNRC4a enhances basal immunity resulting in broad-spectrum disease resistance. Pizarro L, Leibman-Markus M, Gupta R, Kovetz N, Shtein I, Bar E, Davidovich-Rikanati R, Zarivach R, Lewinsohn E, Avni A, Bar M. Commun Biol 3 404 (2020)
  28. Maize ZmFNSI Homologs Interact with an NLR Protein to Modulate Hypersensitive Response. Zhu YX, Ge C, Ma S, Liu XY, Liu M, Sun Y, Wang GF. Int J Mol Sci 21 E2529 (2020)
  29. Molecular evidence of the avocado defense response to Fusarium kuroshium infection: a deep transcriptome analysis using RNA-Seq. Pérez-Torres CA, Ibarra-Laclette E, Hernández-Domínguez EE, Rodríguez-Haas B, Pérez-Lira AJ, Villafán E, Alonso-Sánchez A, García-Ávila CJ, Ramírez-Pool JA, Sánchez-Rangel D. PeerJ 9 e11215 (2021)
  30. Plant NLR immune receptor Tm-22 activation requires NB-ARC domain-mediated self-association of CC domain. Wang J, Chen T, Han M, Qian L, Li J, Wu M, Han T, Cao J, Nagalakshmi U, Rathjen JP, Hong Y, Liu Y. PLoS Pathog 16 e1008475 (2020)
  31. Pm21 CC domain activity modulated by intramolecular interactions is implicated in cell death and disease resistance. Gao A, Hu M, Gong Y, Dong R, Jiang Y, Zhu S, Ji J, Zhang D, Li S, He H. Mol Plant Pathol 21 975-984 (2020)
  32. The Capsicum baccatum-Specific Truncated NLR Protein CbCN Enhances the Innate Immunity against Colletotrichum acutatum. Son S, Kim S, Lee KS, Oh J, Choi I, Do JW, Yoon JB, Han J, Park SR. Int J Mol Sci 22 7672 (2021)
  33. The origin and evolution of a plant resistosome. Gong Z, Qi J, Hu M, Bi G, Zhou JM, Han GZ. Plant Cell 34 1600-1620 (2022)
  34. A DNA-Binding Bromodomain-Containing Protein Interacts with and Reduces Rx1-Mediated Immune Response to Potato Virus X. Sukarta OCA, Townsend PD, Llewelyn A, Dixon CH, Slootweg EJ, Pålsson LO, Takken FLW, Goverse A, Cann MJ. Plant Commun 1 100086 (2020)
  35. Comparative Genomics and Functional Studies of Wheat BED-NLR Loci. Marchal C, Wheat Genome Project, Haberer G, Spannagl M, Uauy C. Genes (Basel) 11 E1406 (2020)
  36. Pathogen effector AvrSr35 triggers Sr35 resistosome assembly via a direct recognition mechanism. Zhao YB, Liu MX, Chen TT, Ma X, Li ZK, Zheng Z, Zheng SR, Chen L, Li YZ, Tang LR, Chen Q, Wang P, Ouyang S. Sci Adv 8 eabq5108 (2022)
  37. Perturbation of nuclear-cytosolic shuttling of Rx1 compromises extreme resistance and translational arrest of potato virus X transcripts. Richard MMS, Knip M, Schachtschabel J, Beijaert MS, Takken FLW. Plant J 106 468-479 (2021)
  38. Sensor NLR immune proteins activate oligomerization of their NRC helpers in response to plant pathogens. Contreras MP, Pai H, Tumtas Y, Duggan C, Yuen ELH, Cruces AV, Kourelis J, Ahn HK, Lee KT, Wu CH, Bozkurt TO, Derevnina L, Kamoun S. EMBO J 42 e111519 (2023)
  39. A cluster of atypical resistance genes in soybean confers broad-spectrum antiviral activity. Yan T, Zhou Z, Wang R, Bao D, Li S, Li A, Yu R, Wuriyanghan H. Plant Physiol 188 1277-1293 (2022)
  40. A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Shimizu M, Hirabuchi A, Sugihara Y, Abe A, Takeda T, Kobayashi M, Hiraka Y, Kanzaki E, Oikawa K, Saitoh H, Langner T, Banfield MJ, Kamoun S, Terauchi R. Proc Natl Acad Sci U S A 119 e2116896119 (2022)
  41. A novel allele of the Arabidopsis thaliana MACPF protein CAD1 results in deregulated immune signaling. Holmes DR, Bredow M, Thor K, Pascetta SA, Sementchoukova I, Siegel KR, Zipfel C, Monaghan J. Genetics 217 iyab022 (2021)
  42. A vector system for fast-forward studies of the HOPZ-ACTIVATED RESISTANCE1 (ZAR1) resistosome in the model plant Nicotiana benthamiana. Harant A, Pai H, Sakai T, Kamoun S, Adachi H. Plant Physiol 188 70-80 (2022)
  43. A wheat resistosome defines common principles of immune receptor channels. Förderer A, Li E, Lawson AW, Deng YN, Sun Y, Logemann E, Zhang X, Wen J, Han Z, Chang J, Chen Y, Schulze-Lefert P, Chai J. Nature 610 532-539 (2022)
  44. Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii. Lin G, Chen H, Tian B, Sehgal SK, Singh L, Xie J, Rawat N, Juliana P, Singh N, Shrestha S, Wilson DL, Shult H, Lee H, Schoen AW, Tiwari VK, Singh RP, Guttieri MJ, Trick HN, Poland J, Bowden RL, Bai G, Gill B, Liu S. Nat Commun 13 3044 (2022)
  45. Dynamic localization of a helper NLR at the plant-pathogen interface underpins pathogen recognition. Duggan C, Moratto E, Savage Z, Hamilton E, Adachi H, Wu CH, Leary AY, Tumtas Y, Rothery SM, Maqbool A, Nohut S, Martin TR, Kamoun S, Bozkurt TO. Proc Natl Acad Sci U S A 118 e2104997118 (2021)
  46. Effector-dependent activation and oligomerization of plant NRC class helper NLRs by sensor NLR immune receptors Rpi-amr3 and Rpi-amr1. Ahn HK, Lin X, Olave-Achury AC, Derevnina L, Contreras MP, Kourelis J, Wu CH, Kamoun S, Jones JDG. EMBO J 42 e111484 (2023)
  47. Investigations into a putative role for the novel BRASSIKIN pseudokinases in compatible pollen-stigma interactions in Arabidopsis thaliana. Doucet J, Lee HK, Udugama N, Xu J, Qi B, Goring DR. BMC Plant Biol 19 549 (2019)
  48. Jurassic NLR: Conserved and dynamic evolutionary features of the atypically ancient immune receptor ZAR1. Adachi H, Sakai T, Kourelis J, Pai H, Gonzalez Hernandez JL, Utsumi Y, Seki M, Maqbool A, Kamoun S. Plant Cell 35 3662-3685 (2023)
  49. Maize nicotinate N-methyltransferase interacts with the NLR protein Rp1-D21 and modulates the hypersensitive response. Liu M, Li YJ, Zhu YX, Sun Y, Wang GF. Mol Plant Pathol 22 564-579 (2021)
  50. Mechanism of NAIP-NLRC4 inflammasome activation revealed by cryo-EM structure of unliganded NAIP5. Paidimuddala B, Cao J, Nash G, Xie Q, Wu H, Zhang L. Nat Struct Mol Biol 30 159-166 (2023)
  51. NLRscape: an atlas of plant NLR proteins. Martin EC, Ion CF, Ifrimescu F, Spiridon L, Bakker J, Goverse A, Petrescu AJ. Nucleic Acids Res 51 D1470-D1482 (2023)
  52. Plasma membrane association and resistosome formation of plant helper immune receptors. Wang Z, Liu X, Yu J, Yin S, Cai W, Kim NH, El Kasmi F, Dangl JL, Wan L. Proc Natl Acad Sci U S A 120 e2222036120 (2023)
  53. Letter The Arabidopsis ZED1-Related Kinase Genomic Cluster Is Specifically Required for Effector-Triggered Immunity. Seto D, Laflamme B, Guttman DS, Desveaux D. Plant Physiol 184 1635-1639 (2020)
  54. The small molecule Zaractin activates ZAR1-mediated immunity in Arabidopsis. Seto D, Khan M, Bastedo DP, Martel A, Vo T, Guttman D, Subramaniam R, Desveaux D. Proc Natl Acad Sci U S A 118 e2116570118 (2021)
  55. A semi-dominant NLR allele causes whole-seedling necrosis in wheat. Jia H, Xue S, Lei L, Fan M, Peng S, Li T, Nagarajan R, Carver B, Ma Z, Deng J, Yan L. Plant Physiol 186 483-496 (2021)
  56. Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Klymiuk V, Chawla HS, Wiebe K, Ens J, Fatiukha A, Govta L, Fahima T, Pozniak CJ. Commun Biol 5 826 (2022)
  57. Effector XopQ-induced stromule formation in Nicotiana benthamiana depends on ETI signaling components ADR1 and NRG1. Prautsch J, Erickson JL, Özyürek S, Gormanns R, Franke L, Lu Y, Marx J, Niemeyer F, Parker JE, Stuttmann J, Schattat MH. Plant Physiol 191 161-176 (2023)
  58. Identification of the Capsicum baccatum NLR Protein CbAR9 Conferring Disease Resistance to Anthracnose. Son S, Kim S, Lee KS, Oh J, Choi I, Do JW, Yoon JB, Han J, Choi D, Park SR. Int J Mol Sci 22 12612 (2021)
  59. NLR immune receptor RB is differentially targeted by two homologous but functionally distinct effector proteins. Zhao J, Song J. Plant Commun 2 100236 (2021)
  60. NLRexpress-A bundle of machine learning motif predictors-Reveals motif stability underlying plant Nod-like receptors diversity. Martin EC, Spiridon L, Goverse A, Petrescu AJ. Front Plant Sci 13 975888 (2022)
  61. Orthologous genes Pm12 and Pm21 from two wild relatives of wheat show evolutionary conservation but divergent powdery mildew resistance. Zhu S, Liu C, Gong S, Chen Z, Chen R, Liu T, Liu R, Du H, Guo R, Li G, Li M, Fan R, Liu Z, Shen QH, Gao A, Ma P, He H. Plant Commun 4 100472 (2023)
  62. Regulation of plant immunity via small RNA-mediated control of NLR expression. López-Márquez D, Del-Espino Á, Ruiz-Albert J, Bejarano ER, Brodersen P, Beuzón CR. J Exp Bot 74 6052-6068 (2023)
  63. Structural polymorphisms within a common powdery mildew effector scaffold as a driver of coevolution with cereal immune receptors. Cao Y, Kümmel F, Logemann E, Gebauer JM, Lawson AW, Yu D, Uthoff M, Keller B, Jirschitzka J, Baumann U, Tsuda K, Chai J, Schulze-Lefert P. Proc Natl Acad Sci U S A 120 e2307604120 (2023)
  64. The activity of the RGA5 sensor NLR from rice requires binding of its integrated HMA domain to effectors but not HMA domain self-interaction. Xi Y, Chalvon V, Padilla A, Cesari S, Kroj T. Mol Plant Pathol 23 1320-1330 (2022)
  65. ATP-citrate lyase B (ACLB) negatively affects cell death and resistance to Verticillium wilt. Liu F, Ma Z, Cai S, Dai L, Gao J, Zhou B. BMC Plant Biol 22 443 (2022)
  66. An atypical NLR protein modulates the NRC immune receptor network in Nicotiana benthamiana. Adachi H, Sakai T, Harant A, Pai H, Honda K, Toghani A, Claeys J, Duggan C, Bozkurt TO, Wu CH, Kamoun S. PLoS Genet 19 e1010500 (2023)
  67. Cell death as a defense strategy against pathogens in plants and animals. Salguero-Linares J, Coll NS. PLoS Pathog 19 e1011253 (2023)
  68. Design of allosteric sites into rotary motor V1-ATPase by restoring lost function of pseudo-active sites. Kosugi T, Iida T, Tanabe M, Iino R, Koga N. Nat Chem 15 1591-1598 (2023)
  69. Dynamic changes of the Prf/Pto tomato resistance complex following effector recognition. Sheikh AH, Zacharia I, Pardal AJ, Dominguez-Ferreras A, Sueldo DJ, Kim JG, Balmuth A, Gutierrez JR, Conlan BF, Ullah N, Nippe OM, Girija AM, Wu CH, Sessa G, Jones AME, Grant MR, Gifford ML, Mudgett MB, Rathjen JP, Ntoukakis V. Nat Commun 14 2568 (2023)
  70. Editorial Editorial: Regulation of plant immunity by immune receptors. Wang W, Zhou Z, Noman A, Kadota Y. Front Plant Sci 14 1320509 (2023)
  71. Expression, purification and crystallization of the N-terminal Solanaceae domain of the Sw-5b NLR immune receptor. Li J, Xin J, Zhao X, Zhao Y, Wang T, Xing W, Tao X. Acta Crystallogr F Struct Biol Commun 77 8-12 (2021)
  72. Functional Diversification Analysis of Soybean Malectin/Malectin-Like Domain-Containing Receptor-Like Kinases in Immunity by Transient Expression Assays. Zhang Q, Chen S, Bao Y, Wang D, Wang W, Chen R, Li Y, Xu G, Feng X, Liang X, Dou D. Front Plant Sci 13 938876 (2022)
  73. Innate immunity in fungi: Is regulated cell death involved? Gaspar ML, Pawlowska TE. PLoS Pathog 18 e1010460 (2022)
  74. Large-scale mutational analysis of wheat powdery mildew resistance gene Pm21. He H, Guo R, Gao A, Chen Z, Liu R, Liu T, Kang X, Zhu S. Front Plant Sci 13 988641 (2022)
  75. Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. Le Boulch P, Poëssel JL, Roux D, Lugan R. Front Plant Sci 13 992544 (2022)
  76. NADase and now Ca2+ channel, what else to learn about plant NLRs? Wan L, He Z. Stress Biol 1 7 (2021)
  77. Oligomerization of a plant helper NLR requires cell-surface and intracellular immune receptor activation. Feehan JM, Wang J, Sun X, Choi J, Ahn HK, Ngou BPM, Parker JE, Jones JDG. Proc Natl Acad Sci U S A 120 e2210406120 (2023)
  78. Plant and prokaryotic TIR domains generate distinct cyclic ADPR NADase products. Bayless AM, Chen S, Ogden SC, Xu X, Sidda JD, Manik MK, Li S, Kobe B, Ve T, Song L, Grant M, Wan L, Nishimura MT. Sci Adv 9 eade8487 (2023)
  79. Plant immunity in soybean: progress, strategies, and perspectives. Rao W, Wan L, Wang E. Mol Breed 43 52 (2023)
  80. Research on ADR1s helps understanding the plant immune network. Hu M, Zhou JM. Stress Biol 2 12 (2022)
  81. Resurrection of plant disease resistance proteins via helper NLR bioengineering. Contreras MP, Pai H, Selvaraj M, Toghani A, Lawson DM, Tumtas Y, Duggan C, Yuen ELH, Stevenson CEM, Harant A, Maqbool A, Wu CH, Bozkurt TO, Kamoun S, Derevnina L. Sci Adv 9 eadg3861 (2023)
  82. SNP-based bulk segregant analysis revealed disease resistance QTLs associated with northern corn leaf blight in maize. Zhai R, Huang A, Mo R, Zou C, Wei X, Yang M, Tan H, Huang K, Qin J. Front Genet 13 1038948 (2022)
  83. Show me your ID: NLR immune receptors with integrated domains in plants. Marchal C, Michalopoulou VA, Zou Z, Cevik V, Sarris PF. Essays Biochem 66 527-539 (2022)
  84. Single amino acid change alters specificity of the multi-allelic wheat stem rust resistance locus SR9. Zhang J, Nirmala J, Chen S, Jost M, Steuernagel B, Karafiatova M, Hewitt T, Li H, Edae E, Sharma K, Hoxha S, Bhatt D, Antoniou-Kourounioti R, Dodds P, Wulff BBH, Dolezel J, Ayliffe M, Hiebert C, McIntosh R, Dubcovsky J, Zhang P, Rouse MN, Lagudah E. Nat Commun 14 7354 (2023)
  85. Structural basis for negative regulation of the Escherichia coli maltose system. Wu Y, Sun Y, Richet E, Han Z, Chai J. Nat Commun 14 4925 (2023)
  86. Structural basis for thioredoxin-mediated suppression of NLRP1 inflammasome. Zhang Z, Shibata T, Fujimura A, Kitaura J, Miyake K, Ohto U, Shimizu T. Nature 622 188-194 (2023)
  87. Structure and functional divergence of PIP peptide family revealed by functional studies on PIP1 and PIP2 in Arabidopsis thaliana. Yu XS, Wang HR, Lei FF, Li RQ, Yao HP, Shen JB, Ain NU, Cai Y. Front Plant Sci 14 1208549 (2023)
  88. Structure-function analyses of coiled-coil immune receptors define a hydrophobic module for improving plant virus resistance. Wu X, Zhang X, Wang H, Fang RX, Ye J. J Exp Bot 74 1372-1388 (2023)
  89. Structures of plant resistosome reveal how NLR immune receptors are activated. Shi X, Dong S, Liu W. aBIOTECH 1 147-150 (2020)
  90. Syncytium Induced by Plant-Parasitic Nematodes. Matuszkiewicz M, Sobczak M. Results Probl Cell Differ 71 371-403 (2024)
  91. Transcriptome and Small RNA Profiling of Potato Virus Y Infected Potato Cultivars, Including Systemically Infected Russet Burbank. Ross BT, Zidack N, McDonald R, Flenniken ML. Viruses 14 523 (2022)
  92. Tsw - A case study on structure-function puzzles in plant NLRs with unusually large LRR domains. van Grinsven IL, Martin EC, Petrescu AJ, Kormelink R. Front Plant Sci 13 983693 (2022)
  93. Two functional CC-NBS-LRR proteins from rye chromosome 6RS confer differential age-related powdery mildew resistance to wheat. Han G, Liu H, Zhu S, Gu T, Cao L, Yan H, Jin Y, Wang J, Liu S, Zhou Y, Shi Z, He H, An D. Plant Biotechnol J 22 66-81 (2024)