6mju Citations

Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression.

Abstract

Cyclic GMP-AMP synthase (cGAS) is the primary sensor for aberrant intracellular dsDNA producing the cyclic dinucleotide cGAMP, a second messenger initiating cytokine production in subsets of myeloid lineage cell types. Therefore, inhibition of the enzyme cGAS may act anti-inflammatory. Here we report the discovery of human-cGAS-specific small-molecule inhibitors by high-throughput screening and the targeted medicinal chemistry optimization for two molecular scaffolds. Lead compounds from one scaffold co-crystallize with human cGAS and occupy the ATP- and GTP-binding active site. The specificity and potency of these drug candidates is further documented in human myeloid cells including primary macrophages. These novel cGAS inhibitors with cell-based activity will serve as probes into cGAS-dependent innate immune pathways and warrant future pharmacological studies for treatment of cGAS-dependent inflammatory diseases.

Articles - 6mju mentioned but not cited (1)



Reviews citing this publication (52)

  1. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Decout A, Katz JD, Venkatraman S, Ablasser A. Nat Rev Immunol 21 548-569 (2021)
  2. The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer. Kwon J, Bakhoum SF. Cancer Discov 10 26-39 (2020)
  3. Senescence and the SASP: many therapeutic avenues. Birch J, Gil J. Genes Dev 34 1565-1576 (2020)
  4. Mitochondrial DNA in inflammation and immunity. Riley JS, Tait SW. EMBO Rep 21 e49799 (2020)
  5. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Ablasser A, Hur S. Nat Immunol 21 17-29 (2020)
  6. Research Advances in How the cGAS-STING Pathway Controls the Cellular Inflammatory Response. Wan D, Jiang W, Hao J. Front Immunol 11 615 (2020)
  7. The role of retrotransposable elements in ageing and age-associated diseases. Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, Linker SB, Gage FH, Kreiling JA, Petrashen AP, Woodham TA, Taylor JR, Helfand SL, Sedivy JM. Nature 596 43-53 (2021)
  8. Small molecules targeting the innate immune cGAS‒STING‒TBK1 signaling pathway. Ding C, Song Z, Shen A, Chen T, Zhang A. Acta Pharm Sin B 10 2272-2298 (2020)
  9. The World Goes Bats: Living Longer and Tolerating Viruses. Gorbunova V, Seluanov A, Kennedy BK. Cell Metab 32 31-43 (2020)
  10. Mitochondria as intracellular signaling platforms in health and disease. Tan JX, Finkel T. J Cell Biol 219 e202002179 (2020)
  11. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Garland KM, Sheehy TL, Wilson JT. Chem Rev 122 5977-6039 (2022)
  12. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Yu L, Liu P. Signal Transduct Target Ther 6 170 (2021)
  13. The cGAS-STING pathway: The role of self-DNA sensing in inflammatory lung disease. Ma R, Ortiz Serrano TP, Davis J, Prigge AD, Ridge KM. FASEB J 34 13156-13170 (2020)
  14. The cGAS-STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy. Oduro PK, Zheng X, Wei J, Yang Y, Wang Y, Zhang H, Liu E, Gao X, Du M, Wang Q. Acta Pharm Sin B 12 50-75 (2022)
  15. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Skopelja-Gardner S, An J, Elkon KB. Nat Rev Nephrol 18 558-572 (2022)
  16. Mitochondrial function in development and disease. Rossmann MP, Dubois SM, Agarwal S, Zon LI. Dis Model Mech 14 dmm048912 (2021)
  17. DNA damage and repair in age-related inflammation. Zhao Y, Simon M, Seluanov A, Gorbunova V. Nat Rev Immunol 23 75-89 (2023)
  18. Inhibition of RNA-binding proteins with small molecules. Wu P. Nat Rev Chem 4 441-458 (2020)
  19. Regulation and inhibition of the DNA sensor cGAS. Hertzog J, Rehwinkel J. EMBO Rep 21 e51345 (2020)
  20. Chromatin basis of the senescence-associated secretory phenotype. Hao X, Wang C, Zhang R. Trends Cell Biol 32 513-526 (2022)
  21. Interrupting cyclic dinucleotide-cGAS-STING axis with small molecules. Sintim HO, Mikek CG, Wang M, Sooreshjani MA. Medchemcomm 10 1999-2023 (2019)
  22. Intervention of cGAS‒STING signaling in sterile inflammatory diseases. Hong Z, Mei J, Guo H, Zhu J, Wang C. J Mol Cell Biol 14 mjac005 (2022)
  23. Therapeutic Development by Targeting the cGAS-STING Pathway in Autoimmune Disease and Cancer. Li Q, Tian S, Liang J, Fan J, Lai J, Chen Q. Front Pharmacol 12 779425 (2021)
  24. The Role of cGAS-STING in Age-Related Diseases from Mechanisms to Therapies. Zheng W, Feng D, Xiong X, Liao X, Wang S, Xu H, Le W, Wei Q, Yang L. Aging Dis 14 1145-1165 (2023)
  25. Targeting Mitochondria to Control Ageing and Senescence. Protasoni M, Serrano M. Pharmaceutics 15 352 (2023)
  26. The Innate Immune cGAS-STING-Pathway in Cardiovascular Diseases - A Mini Review. Rech L, Rainer PP. Front Cardiovasc Med 8 715903 (2021)
  27. A Variety of Nucleic Acid Species Are Sensed by cGAS, Implications for Its Diverse Functions. Wang D, Zhao H, Shen Y, Chen Q. Front Immunol 13 826880 (2022)
  28. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Zool Res 44 183-218 (2023)
  29. Inhibitory targeting cGAS-STING-TBK1 axis: Emerging strategies for autoimmune diseases therapy. Zhang M, Zou Y, Zhou X, Zhou J. Front Immunol 13 954129 (2022)
  30. Targeting cGAS/STING signaling-mediated myeloid immune cell dysfunction in TIME. Kumar V, Bauer C, Stewart JH. J Biomed Sci 30 48 (2023)
  31. cGAMP-activated cGAS-STING signaling: its bacterial origins and evolutionary adaptation by metazoans. Patel DJ, Yu Y, Xie W. Nat Struct Mol Biol 30 245-260 (2023)
  32. Targeting cellular senescence to combat cancer and ageing. Wang C, Hao X, Zhang R. Mol Oncol 16 3319-3332 (2022)
  33. Beyond DNA sensing: expanding the role of cGAS/STING in immunity and diseases. Seok JK, Kim M, Kang HC, Cho YY, Lee HS, Lee JY. Arch Pharm Res 46 500-534 (2023)
  34. Dysregulation of the cGAS-STING Pathway in Monogenic Autoinflammation and Lupus. Wobma H, Shin DS, Chou J, Dedeoğlu F. Front Immunol 13 905109 (2022)
  35. Regulation of cGAS Activity and Downstream Signaling. Joshi B, Joshi JC, Mehta D. Cells 11 2812 (2022)
  36. Regulation of cGAS-STING Pathway - Implications for Systemic Lupus Erythematosus. Hagiwara AM, Moore RE, Wallace DJ, Ishimori M, Jefferies CA. Rheumatol Immunol Res 2 173-184 (2021)
  37. The role of cGAS-STING signaling in pulmonary fibrosis and its therapeutic potential. Zhang J, Zhang L, Chen Y, Fang X, Li B, Mo C. Front Immunol 14 1273248 (2023)
  38. cGAS-STING pathway as a potential trigger of immunosenescence and inflammaging. Schmitz CRR, Maurmann RM, Guma FTCR, Bauer ME, Barbé-Tuana FM. Front Immunol 14 1132653 (2023)
  39. Current concepts of photosensitivity in cutaneous lupus erythematosus. Klein B, Kunz M. Front Med (Lausanne) 9 939594 (2022)
  40. Significance of the cGAS-STING Pathway in Health and Disease. Zhou J, Zhuang Z, Li J, Feng Z. Int J Mol Sci 24 13316 (2023)
  41. A path towards personalized medicine for autoinflammatory and related diseases. Miner JJ, Fitzgerald KA. Nat Rev Rheumatol 19 182-189 (2023)
  42. Cytoplasmic DNAs: Sources, sensing, and roles in the development of lung inflammatory diseases and cancer. He X, Sun Y, Lu J, Naz F, Ma S, Liu J. Front Immunol 14 1117760 (2023)
  43. How Does cGAS Avoid Sensing Self-DNA under Normal Physiological Conditions? Zheng W, Chen N, Meurens F, Zheng W, Zhu J. Int J Mol Sci 24 14738 (2023)
  44. Mechanism and therapeutic potential of targeting cGAS-STING signaling in neurological disorders. Huang Y, Liu B, Sinha SC, Amin S, Gan L. Mol Neurodegener 18 79 (2023)
  45. Mitochondrial DNA-triggered innate immune response: mechanisms and diseases. Hu MM, Shu HB. Cell Mol Immunol 20 1403-1412 (2023)
  46. Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. Ma X, Xin D, She R, Liu D, Ge J, Mei Z. Front Immunol 14 1275408 (2023)
  47. Progress in understanding the role of cGAS-STING pathway associated with programmed cell death in intervertebral disc degeneration. Wang Z, Hu X, Cui P, Kong C, Chen X, Wang W, Lu S. Cell Death Discov 9 377 (2023)
  48. Small molecule modulators of immune pattern recognition receptors. Tsukidate T, Hespen CW, Hang HC. RSC Chem Biol 4 1014-1036 (2023)
  49. The Crucial Roles and Research Advances of cGAS-STING Pathway in Cutaneous Disorders. Huang C, Li W, Ren X, Tang M, Zhang K, Zhuo F, Dou X, Yu B. Inflammation 46 1161-1176 (2023)
  50. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, Ivanov R. Int J Mol Sci 24 14820 (2023)
  51. The Role of cGAS-STING Signalling in Metabolic Diseases: from Signalling Networks to Targeted Intervention. Gong J, Gao X, Ge S, Li H, Wang R, Zhao L. Int J Biol Sci 20 152-174 (2024)
  52. Understanding nucleic acid sensing and its therapeutic applications. Kong LZ, Kim SM, Wang C, Lee SY, Oh SC, Lee S, Jo S, Kim TD. Exp Mol Med 55 2320-2331 (2023)

Articles citing this publication (35)

  1. Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Xie W, Lama L, Adura C, Tomita D, Glickman JF, Tuschl T, Patel DJ. Proc Natl Acad Sci U S A 116 11946-11955 (2019)
  2. Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. Han C, Liu Z, Zhang Y, Shen A, Dong C, Zhang A, Moore C, Ren Z, Lu C, Cao X, Zhang CL, Qiao J, Fu YX. Nat Immunol 21 546-554 (2020)
  3. Structural basis for nucleosome-mediated inhibition of cGAS activity. Cao D, Han X, Fan X, Xu RM, Zhang X. Cell Res 30 1088-1097 (2020)
  4. IRGM1 links mitochondrial quality control to autoimmunity. Rai P, Janardhan KS, Meacham J, Madenspacher JH, Lin WC, Karmaus PWF, Martinez J, Li QZ, Yan M, Zeng J, Grinstaff MW, Shirihai OS, Taylor GA, Fessler MB. Nat Immunol 22 312-321 (2021)
  5. TREX1 as a Novel Immunotherapeutic Target. Hemphill WO, Simpson SR, Liu M, Salsbury FR, Hollis T, Grayson JM, Perrino FW. Front Immunol 12 660184 (2021)
  6. DDX41 is required for cGAS-STING activation against DNA virus infection. Singh RS, Vidhyasagar V, Yang S, Arna AB, Yadav M, Aggarwal A, Aguilera AN, Shinriki S, Bhanumathy KK, Pandey K, Xu A, Rapin N, Bosch M, DeCoteau J, Xiang J, Vizeacoumar FJ, Zhou Y, Misra V, Matsui H, Ross SR, Wu Y. Cell Rep 39 110856 (2022)
  7. Viral cGAMP nuclease reveals the essential role of DNA sensing in protection against acute lethal virus infection. Hernáez B, Alonso G, Georgana I, El-Jesr M, Martín R, Shair KHY, Fischer C, Sauer S, Maluquer de Motes C, Alcamí A. Sci Adv 6 eabb4565 (2020)
  8. Sequence-dependent inhibition of cGAS and TLR9 DNA sensing by 2'-O-methyl gapmer oligonucleotides. Valentin R, Wong C, Alharbi AS, Pradeloux S, Morros MP, Lennox KA, Ellyard JI, Garcin AJ, Ullah TR, Kusuma GD, Pépin G, Li HM, Pearson JS, Ferrand J, Lim R, Veedu RN, Morand EF, Vinuesa CG, Behlke MA, Gantier MP. Nucleic Acids Res 49 6082-6099 (2021)
  9. Small molecule inhibition of human cGAS reduces total cGAMP output and cytokine expression in cells. Wiser C, Kim B, Vincent J, Ascano M. Sci Rep 10 7604 (2020)
  10. DNA methyltransferase 3 alpha and TET methylcytosine dioxygenase 2 restrain mitochondrial DNA-mediated interferon signaling in macrophages. Cobo I, Tanaka TN, Chandra Mangalhara K, Lana A, Yeang C, Han C, Schlachetzki J, Challcombe J, Fixsen BR, Sakai M, Li RZ, Fields H, Mokry M, Tsai RG, Bejar R, Prange K, de Winther M, Shadel GS, Glass CK. Immunity 55 1386-1401.e10 (2022)
  11. Non-cell-autonomous cancer progression from chromosomal instability. Li J, Hubisz MJ, Earlie EM, Duran MA, Hong C, Varela AA, Lettera E, Deyell M, Tavora B, Havel JJ, Phyu SM, Amin AD, Budre K, Kamiya E, Cavallo JA, Garris C, Powell S, Reis-Filho JS, Wen H, Bettigole S, Khan AJ, Izar B, Parkes EE, Laughney AM, Bakhoum SF. Nature 620 1080-1088 (2023)
  12. Perillaldehyde Inhibition of cGAS Reduces dsDNA-Induced Interferon Response. Chu L, Li C, Li Y, Yu Q, Yu H, Li C, Meng W, Zhu J, Wang Q, Wang C, Cui S. Front Immunol 12 655637 (2021)
  13. Tau activation of microglial cGAS-IFN reduces MEF2C-mediated cognitive resilience. Udeochu JC, Amin S, Huang Y, Fan L, Torres ERS, Carling GK, Liu B, McGurran H, Coronas-Samano G, Kauwe G, Mousa GA, Wong MY, Ye P, Nagiri RK, Lo I, Holtzman J, Corona C, Yarahmady A, Gill MT, Raju RM, Mok SA, Gong S, Luo W, Zhao M, Tracy TE, Ratan RR, Tsai LH, Sinha SC, Gan L. Nat Neurosci 26 737-750 (2023)
  14. The Chlamydia trachomatis Inclusion Membrane Protein CTL0390 Mediates Host Cell Exit via Lysis through STING Activation. Bishop RC, Derré I. Infect Immun 90 e0019022 (2022)
  15. Regulation of cGAS activity by RNA-modulated phase separation. Chen S, Rong M, Lv Y, Zhu D, Xiang Y. EMBO Rep 24 e51800 (2023)
  16. A systematic identification of anti-inflammatory active components derived from Mu Dan Pi and their applications in inflammatory bowel disease. Chen TF, Hsu JT, Wu KC, Hsiao CF, Lin JA, Cheng YH, Liu YH, Lee DY, Chang HH, Cho DY, Hsu JL. Sci Rep 10 17238 (2020)
  17. Centromere defects, chromosome instability, and cGAS-STING activation in systemic sclerosis. Paul S, Kaplan MH, Khanna D, McCourt PM, Saha AK, Tsou PS, Anand M, Radecki A, Mourad M, Sawalha AH, Markovitz DM, Contreras-Galindo R. Nat Commun 13 7074 (2022)
  18. Checkpoint Kinase 1 (Chk1) inhibition fails to activate the Stimulator of Interferon Genes (STING) innate immune signalling in a human coculture cancer system. Brooks T, Wayne J, Massey AJ. Mol Biomed 2 19 (2021)
  19. Cytosolic DNA sensing by cGAS/STING promotes TRPV2-mediated Ca2+ release to protect stressed replication forks. Li S, Kong L, Meng Y, Cheng C, Lemacon DS, Yang Z, Tan K, Cheruiyot A, Lu Z, You Z. Mol Cell 83 556-573.e7 (2023)
  20. Discovery and characterization of a novel cGAS covalent inhibitor for the treatment of inflammatory bowel disease. Song J, Yang RR, Chang J, Liu YD, Lu CH, Chen LF, Guo H, Zhang YH, Fan ZS, Zhou JY, Zhou GZ, Zhang KK, Luo XM, Chen KX, Jiang HL, Zhang SL, Zheng MY. Acta Pharmacol Sin 44 791-800 (2023)
  21. Growth-promoting function of the cGAS-STING pathway in triple-negative breast cancer cells. Liu LC, Shen YC, Wang YL, Wu WR, Chang LC, Chen YH, Lee CC, Wang SC. Front Oncol 12 851795 (2022)
  22. A STING-based fluorescent polarization assay for monitoring activities of cyclic dinucleotide metabolizing enzymes. Karanja CW, Yeboah KS, Ong WWS, Sintim HO. RSC Chem Biol 2 206-214 (2021)
  23. Accelerated replicative senescence of ataxia-telangiectasia skin fibroblasts is retained at physiologic oxygen levels, with unique and common transcriptional patterns. Haj M, Levon A, Frey Y, Hourvitz N, Campisi J, Tzfati Y, Elkon R, Ziv Y, Shiloh Y. Aging Cell 22 e13869 (2023)
  24. Discovery and identification of a novel small molecule BCL-2 inhibitor that binds to the BH4 domain. Zhou JY, Yang RR, Chang J, Song J, Fan ZS, Zhang YH, Lu CH, Jiang HL, Zheng MY, Zhang SL. Acta Pharmacol Sin 44 475-485 (2023)
  25. Identified Isosteric Replacements of Ligands' Glycosyl Domain by Data Mining. Zhang T, Jiang S, Li T, Liu Y, Zhang Y. ACS Omega 8 25165-25184 (2023)
  26. Modeling the innate inflammatory cGAS/STING pathway: sexually dimorphic effects on microglia and cognition in obesity and prediabetes. Elzinga SE, Koubek EJ, Hayes JM, Carter A, Mendelson FE, Webber-Davis I, Lentz SI, Feldman EL. Front Cell Neurosci 17 1167688 (2023)
  27. TREX1 cytosolic DNA degradation correlates with autoimmune disease and cancer immunity. Fang L, Ying S, Xu X, Wu. Clin Exp Immunol 211 193-207 (2023)
  28. Arabinose- and xylose-modified analogs of 2',3'-cGAMP act as STING agonists. Xie W, Lama L, Yang X, Kuryavyi V, Bhattacharya S, Nudelman I, Yang G, Ouerfelli O, Glickman JF, Jones RA, Tuschl T, Patel DJ. Cell Chem Biol 30 1366-1376.e7 (2023)
  29. Caspase-9 inhibition triggers Hsp90-based chemotherapy-mediated tumor intrinsic innate sensing and enhances antitumor immunity. Li J, Han X, Sun M, Li W, Yang G, Chen H, Guo B, Li J, Li X, Wang H. J Immunother Cancer 11 e007625 (2023)
  30. Development of cyclopeptide inhibitors of cGAS targeting protein-DNA interaction and phase separation. Wang X, Wang Y, Cao A, Luo Q, Chen D, Zhao W, Xu J, Li Q, Bu X, Quan J. Nat Commun 14 6132 (2023)
  31. Engineering and Delivery of cGAS-STING Immunomodulators for the Immunotherapy of Cancer and Autoimmune Diseases. Zhou S, Cheng F, Zhang Y, Su T, Zhu G. Acc Chem Res 56 2933-2943 (2023)
  32. Mitochondrial DNA Sensing Pathogen Recognition Receptors in Systemic Sclerosis Associated Interstitial Lung Disease: A Review. Ghincea A, Woo S, Yu S, Pivarnik T, Fiorini V, Herzog EL, Ryu C. Curr Treatm Opt Rheumatol 9 204-220 (2023)
  33. Mitophagy curtails cytosolic mtDNA-dependent activation of cGAS/STING inflammation during aging. Jiménez-Loygorri JI, Villarejo-Zori B, Viedma-Poyatos Á, Zapata-Muñoz J, Benítez-Fernández R, Frutos-Lisón MD, Tomás-Barberán FA, Espín JC, Area-Gómez E, Gomez-Duran A, Boya P. Nat Commun 15 830 (2024)
  34. TXNRD1 drives the innate immune response in senescent cells with implications for age-associated inflammation. Hao X, Zhao B, Towers M, Liao L, Monteiro EL, Xu X, Freeman C, Peng H, Tang HY, Havas A, Kossenkov AV, Berger SL, Adams PD, Speicher DW, Schultz D, Marmorstein R, Zaret KS, Zhang R. Nat Aging 4 185-197 (2024)
  35. Toosendanin activates caspase-1 and induces maturation of IL-1β to inhibit type 2 porcine reproductive and respiratory syndrome virus replication via an IFI16-dependent pathway. Zhang M, Lu C, Su L, Long F, Yang X, Guo X, Song G, An T, Chen W, Chen J. Vet Res 53 61 (2022)