6nbb Citations

High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM.

OpenAccess logo Nat Commun 10 1032 (2019)
Related entries: 6nbc, 6nbd

Cited: 89 times
EuropePMC logo PMID: 30833564

Abstract

Determining high-resolution structures of biological macromolecules amassing less than 100 kilodaltons (kDa) has been a longstanding goal of the cryo-electron microscopy (cryo-EM) community. While the Volta phase plate has enabled visualization of specimens in this size range, this instrumentation is not yet fully automated and can present technical challenges. Here, we show that conventional defocus-based cryo-EM methodologies can be used to determine high-resolution structures of specimens amassing less than 100 kDa using a transmission electron microscope operating at 200 keV coupled with a direct electron detector. Our ~2.7 Å structure of alcohol dehydrogenase (82 kDa) proves that bound ligands can be resolved with high fidelity to enable investigation of drug-target interactions. Our ~2.8 Å and ~3.2 Å structures of methemoglobin demonstrate that distinct conformational states can be identified within a dataset for proteins as small as 64 kDa. Furthermore, we provide the sub-nanometer cryo-EM structure of a sub-50 kDa protein.

Articles - 6nbb mentioned but not cited (6)

  1. Assessment of protein-protein interfaces in cryo-EM derived assemblies. Malhotra S, Joseph AP, Thiyagalingam J, Topf M. Nat Commun 12 3399 (2021)
  2. MAINMASTseg: Automated Map Segmentation Method for Cryo-EM Density Maps with Symmetry. Terashi G, Kagaya Y, Kihara D. J Chem Inf Model 60 2634-2643 (2020)
  3. Cryo-EM Map-Based Model Validation Using the False Discovery Rate Approach. Olek M, Joseph AP. Front Mol Biosci 8 652530 (2021)
  4. Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge. Lawson CL, Kryshtafovych A, Adams PD, Afonine PV, Baker ML, Barad BA, Bond P, Burnley T, Cao R, Cheng J, Chojnowski G, Cowtan K, Dill KA, DiMaio F, Farrell DP, Fraser JS, Herzik MA, Hoh SW, Hou J, Hung LW, Igaev M, Joseph AP, Kihara D, Kumar D, Mittal S, Monastyrskyy B, Olek M, Palmer CM, Patwardhan A, Perez A, Pfab J, Pintilie GD, Richardson JS, Rosenthal PB, Sarkar D, Schäfer LU, Schmid MF, Schröder GF, Shekhar M, Si D, Singharoy A, Terashi G, Terwilliger TC, Vaiana A, Wang L, Wang Z, Wankowicz SA, Williams CJ, Winn M, Wu T, Yu X, Zhang K, Berman HM, Chiu W. Nat Methods 18 156-164 (2021)
  5. Flexible Fitting of Small Molecules into Electron Microscopy Maps Using Molecular Dynamics Simulations with Neural Network Potentials. Vant JW, Lahey SJ, Jana K, Shekhar M, Sarkar D, Munk BH, Kleinekathöfer U, Mittal S, Rowley C, Singharoy A. J Chem Inf Model 60 2591-2604 (2020)
  6. AlphaFold2 and CryoEM: Revisiting CryoEM modeling in near-atomic resolution density maps. Hryc CF, Baker ML. iScience 25 104496 (2022)


Reviews citing this publication (21)

  1. Present and Emerging Methodologies in Cryo-EM Single-Particle Analysis. Wu M, Lander GC. Biophys J 119 1281-1289 (2020)
  2. An Overview of Microcrystal Electron Diffraction (MicroED). Mu X, Gillman C, Nguyen C, Gonen T. Annu Rev Biochem 90 431-450 (2021)
  3. Macromolecular crystallography using microcrystal electron diffraction. Clabbers MTB, Xu H. Acta Crystallogr D Struct Biol 77 313-324 (2021)
  4. Understanding the invisible hands of sample preparation for cryo-EM. Weissenberger G, Henderikx RJM, Peters PJ. Nat Methods 18 463-471 (2021)
  5. Conquer by cryo-EM without physically dividing. Lander GC, Glaeser RM. Biochem Soc Trans 49 2287-2298 (2021)
  6. Coming of Age: Cryo-Electron Tomography as a Versatile Tool to Generate High-Resolution Structures at Cellular/Biological Interfaces. Wang Z, Zhang Q, Mim C. Int J Mol Sci 22 6177 (2021)
  7. Cryo-electron microscopy analysis of small membrane proteins. Nygaard R, Kim J, Mancia F. Curr Opin Struct Biol 64 26-33 (2020)
  8. Development of imaging scaffolds for cryo-electron microscopy. Yeates TO, Agdanowski MP, Liu Y. Curr Opin Struct Biol 60 142-149 (2020)
  9. How low can we go? Structure determination of small biological complexes using single-particle cryo-EM. Wu M, Lander GC. Curr Opin Struct Biol 64 9-16 (2020)
  10. In-cell Solid-State NMR Studies of Antimicrobial Peptides. Separovic F, Keizer DW, Sani MA. Front Med Technol 2 610203 (2020)
  11. Interacting cogs in the machinery of the renin angiotensin system. Lubbe L, Sturrock ED. Biophys Rev 583-589 (2019)
  12. Three-Dimensional Visualization of Viral Structure, Entry, and Replication Underlying the Spread of SARS-CoV-2. Saville JW, Berezuk AM, Srivastava SS, Subramaniam S. Chem Rev 122 14066-14084 (2022)
  13. Advances in methods for atomic resolution macromolecular structure determination. Thompson MC, Yeates TO, Rodriguez JA. F1000Res 9 (2020)
  14. Considerations of Antibody Geometric Constraints on NK Cell Antibody Dependent Cellular Cytotoxicity. Murin CD. Front Immunol 11 1635 (2020)
  15. Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules. Chang WH, Huang SH, Lin HH, Chung SC, Tu IP. Front Bioinform 1 788308 (2021)
  16. Evaluating RNA Structural Flexibility: Viruses Lead the Way. Fairman CW, Lever AML, Kenyon JC. Viruses 13 2130 (2021)
  17. Higher-order G-quadruplexes in promoters are untapped drug targets. Monsen RC. Front Chem 11 1211512 (2023)
  18. How 'Protein-Docking' Translates into the New Emerging Field of Docking Small Molecules to Nucleic Acids? Tessaro F, Scapozza L. Molecules 25 (2020)
  19. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Piper SJ, Johnson RM, Wootten D, Sexton PM. Chem Rev 122 13989-14017 (2022)
  20. Structural Analysis of Protein Complexes by Cryo-Electron Microscopy. Ignatiou A, Macé K, Redzej A, Costa TRD, Waksman G, Orlova EV. Methods Mol Biol 2715 431-470 (2024)
  21. Structure Determination of Microtubules and Pili: Past, Present, and Future Directions. Garnett JA, Atherton J. Front Mol Biosci 8 830304 (2021)

Articles citing this publication (62)

  1. Structural basis of nucleosome-dependent cGAS inhibition. Boyer JA, Spangler CJ, Strauss JD, Cesmat AP, Liu P, McGinty RK, Zhang Q. Science 370 450-454 (2020)
  2. Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs. Kern DM, Sorum B, Mali SS, Hoel CM, Sridharan S, Remis JP, Toso DB, Kotecha A, Bautista DM, Brohawn SG. Nat Struct Mol Biol 28 573-582 (2021)
  3. Current outcomes when optimizing 'standard' sample preparation for single-particle cryo-EM. Carragher B, Cheng Y, Frost A, Glaeser RM, Lander GC, Nogales E, Wang HW. J Microsc 276 39-45 (2019)
  4. Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM. Uchański T, Masiulis S, Fischer B, Kalichuk V, López-Sánchez U, Zarkadas E, Weckener M, Sente A, Ward P, Wohlkönig A, Zögg T, Remaut H, Naismith JH, Nury H, Vranken W, Aricescu AR, Pardon E, Steyaert J. Nat Methods 18 60-68 (2021)
  5. The cryoelectron microscopy structure of the human CDK-activating kinase. Greber BJ, Perez-Bertoldi JM, Lim K, Iavarone AT, Toso DB, Nogales E. Proc Natl Acad Sci U S A 117 22849-22857 (2020)
  6. Development of "Plug and Play" Fiducial Marks for Structural Studies of GPCR Signaling Complexes by Single-Particle Cryo-EM. Dutka P, Mukherjee S, Gao X, Kang Y, de Waal PW, Wang L, Zhuang Y, Melcher K, Zhang C, Xu HE, Kossiakoff AA. Structure 27 1862-1874.e7 (2019)
  7. Spectral DQE of the Volta phase plate. Buijsse B, Trompenaars P, Altin V, Danev R, Glaeser RM. Ultramicroscopy 218 113079 (2020)
  8. Cryo-EM structure of coronavirus-HKU1 haemagglutinin esterase reveals architectural changes arising from prolonged circulation in humans. Hurdiss DL, Drulyte I, Lang Y, Shamorkina TM, Pronker MF, van Kuppeveld FJM, Snijder J, de Groot RJ. Nat Commun 11 4646 (2020)
  9. Structural conservation among variants of the SARS-CoV-2 spike postfusion bundle. Yang K, Wang C, White KI, Pfuetzner RA, Esquivies L, Brunger AT. Proc Natl Acad Sci U S A 119 e2119467119 (2022)
  10. New tools in MolProbity validation: CaBLAM for CryoEM backbone, UnDowser to rethink "waters," and NGL Viewer to recapture online 3D graphics. Prisant MG, Williams CJ, Chen VB, Richardson JS, Richardson DC. Protein Sci 29 315-329 (2020)
  11. Data-guided Multi-Map variables for ensemble refinement of molecular movies. Vant JW, Sarkar D, Streitwieser E, Fiorin G, Skeel R, Vermaas JV, Singharoy A. J Chem Phys 153 214102 (2020)
  12. Routine sub-2.5 Å cryo-EM structure determination of GPCRs. Danev R, Belousoff M, Liang YL, Zhang X, Eisenstein F, Wootten D, Sexton PM. Nat Commun 12 4333 (2021)
  13. 2.5 Å-resolution structure of human CDK-activating kinase bound to the clinical inhibitor ICEC0942. Greber BJ, Remis J, Ali S, Nogales E. Biophys J 120 677-686 (2021)
  14. N-terminal Transmembrane-Helix Epitope Tag for X-ray Crystallography and Electron Microscopy of Small Membrane Proteins. McIlwain BC, Erwin AL, Davis AR, Ben Koff B, Chang L, Bylund T, Chuang GY, Kwong PD, Ohi MD, Lai YT, Stockbridge RB. J Mol Biol 433 166909 (2021)
  15. Structure-function studies of Rgg binding to pheromones and target promoters reveal a model of transcription factor interplay. Capodagli GC, Tylor KM, Kaelber JT, Petrou VI, Federle MJ, Neiditch MB. Proc Natl Acad Sci U S A 117 24494-24502 (2020)
  16. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Bepler T, Kelley K, Noble AJ, Berger B. Nat Commun 11 5208 (2020)
  17. Cryo-EM structure determination of small proteins by nanobody-binding scaffolds (Legobodies). Wu X, Rapoport TA. Proc Natl Acad Sci U S A 118 e2115001118 (2021)
  18. Cryo-EM structure determination of small therapeutic protein targets at 3 Å-resolution using a rigid imaging scaffold. Castells-Graells R, Meador K, Arbing MA, Sawaya MR, Gee M, Cascio D, Gleave E, Debreczeni JÉ, Breed J, Leopold K, Patel A, Jahagirdar D, Lyons B, Subramaniam S, Phillips C, Yeates TO. Proc Natl Acad Sci U S A 120 e2305494120 (2023)
  19. High-power near-concentric Fabry-Perot cavity for phase contrast electron microscopy. Turnbaugh C, Axelrod JJ, Campbell SL, Dioquino JY, Petrov PN, Remis J, Schwartz O, Yu Z, Cheng Y, Glaeser RM, Mueller H. Rev Sci Instrum 92 053005 (2021)
  20. Reducing bias and variance for CTF estimation in single particle cryo-EM. Heimowitz A, Andén J, Singer A. Ultramicroscopy 212 112950 (2020)
  21. Sub-2 Angstrom resolution structure determination using single-particle cryo-EM at 200 keV. Wu M, Lander GC, Herzik MA. J Struct Biol X 4 100020 (2020)
  22. Uniform thin ice on ultraflat graphene for high-resolution cryo-EM. Zheng L, Liu N, Gao X, Zhu W, Liu K, Wu C, Yan R, Zhang J, Gao X, Yao Y, Deng B, Xu J, Lu Y, Liu Z, Li M, Wei X, Wang HW, Peng H. Nat Methods 20 123-130 (2023)
  23. What Could Go Wrong? A Practical Guide to Single-Particle Cryo-EM: From Biochemistry to Atomic Models. Cianfrocco MA, Kellogg EH. J Chem Inf Model 60 2458-2469 (2020)
  24. A 3.8 Å resolution cryo-EM structure of a small protein bound to an imaging scaffold. Liu Y, Huynh DT, Yeates TO. Nat Commun 10 1864 (2019)
  25. Applications of Cryo-EM in small molecule and biologics drug design. Lees JA, Dias JM, Han S. Biochem Soc Trans 49 2627-2638 (2021)
  26. Could Egg White Lysozyme be Solved by Single Particle Cryo-EM? Zhang Y, Tammaro R, Peters PJ, Ravelli RBG. J Chem Inf Model 60 2605-2613 (2020)
  27. Cryo-EM, Protein Engineering, and Simulation Enable the Development of Peptide Therapeutics against Acute Myeloid Leukemia. Zhang K, Horikoshi N, Li S, Powers AS, Hameedi MA, Pintilie GD, Chae HD, Khan YA, Suomivuori CM, Dror RO, Sakamoto KM, Chiu W, Wakatsuki S. ACS Cent Sci 8 214-222 (2022)
  28. Enhancing the signal-to-noise ratio and generating contrast for cryo-EM images with convolutional neural networks. Palovcak E, Asarnow D, Campbell MG, Yu Z, Cheng Y. IUCrJ 7 1142-1150 (2020)
  29. Integrated sample-handling and mounting system for fixed-target serial synchrotron crystallography. Illava G, Jayne R, Finke AD, Closs D, Zeng W, Milano SK, Huang Q, Kriksunov I, Sidorenko P, Wise FW, Zipfel WR, Apker BA, Thorne RE. Acta Crystallogr D Struct Biol 77 628-644 (2021)
  30. Leveraging glycomics data in glycoprotein 3D structure validation with Privateer. Bagdonas H, Ungar D, Agirre J. Beilstein J Org Chem 16 2523-2533 (2020)
  31. Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution. Fan X, Wang J, Zhang X, Yang Z, Zhang JC, Zhao L, Peng HL, Lei J, Wang HW. Nat Commun 10 2386 (2019)
  32. Structure reveals why genome folding is necessary for site-specific integration of foreign DNA into CRISPR arrays. Santiago-Frangos A, Henriques WS, Wiegand T, Gauvin CC, Buyukyoruk M, Graham AB, Wilkinson RA, Triem L, Neselu K, Eng ET, Lander GC, Wiedenheft B. Nat Struct Mol Biol 30 1675-1685 (2023)
  33. The structure of the yeast Ctf3 complex. Hinshaw SM, Dates AN, Harrison SC. Elife 8 (2019)
  34. 2.7 Å cryo-EM structure of vitrified M. musculus H-chain apoferritin from a compact 200 keV cryo-microscope. Hamdi F, Tüting C, Semchonok DA, Visscher KM, Kyrilis FL, Meister A, Skalidis I, Schmidt L, Parthier C, Stubbs MT, Kastritis PL. PLoS One 15 e0232540 (2020)
  35. A 'Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins. Su CC, Lyu M, Morgan CE, Bolla JR, Robinson CV, Yu EW. Nat Methods 18 69-75 (2021)
  36. A critical evaluation of protein kinase regulation by activation loop autophosphorylation. Reinhardt R, Leonard TA. Elife 12 e88210 (2023)
  37. A generalizable scaffold-based approach for structure determination of RNAs by cryo-EM. Langeberg CJ, Kieft JS. Nucleic Acids Res 51 e100 (2023)
  38. A natural fusion of flavodiiron, rubredoxin, and rubredoxin oxidoreductase domains is a self-sufficient water-forming oxidase of Trichomonas vaginalis. Abdulaziz EN, Bell TA, Rashid B, Heacock ML, Begic T, Skinner OS, Yaseen MA, Chao LH, Mootha VK, Pierik AJ, Cracan V. J Biol Chem 298 102210 (2022)
  39. An electron counting algorithm improves imaging of proteins with low-acceleration-voltage cryo-electron microscope. Zhu D, Shi H, Wu C, Zhang X. Commun Biol 5 321 (2022)
  40. Autocorrelation analysis for cryo-EM with sparsity constraints: Improved sample complexity and projection-based algorithms. Bendory T, Khoo Y, Kileel J, Mickelin O, Singer A. Proc Natl Acad Sci U S A 120 e2216507120 (2023)
  41. Bsoft: Image Processing for Structural Biology. Heymann BJ. Bio Protoc 12 e4393 (2022)
  42. Cryo-EM of kinesin-binding protein: challenges and opportunities from protein-surface interactions. Atherton J, Moores CA. Acta Crystallogr D Struct Biol 77 411-423 (2021)
  43. Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization. Lubbe L, Sewell BT, Woodward JD, Sturrock ED. EMBO J 41 e110550 (2022)
  44. CryoEM analysis of small plant biocatalysts at sub-2 Å resolution. Dimos N, Helmer CPO, Chánique AM, Wahl MC, Kourist R, Hilal T, Loll B. Acta Crystallogr D Struct Biol 78 113-123 (2022)
  45. CryoEM at 100 keV: a demonstration and prospects. Naydenova K, McMullan G, Peet MJ, Lee Y, Edwards PC, Chen S, Leahy E, Scotcher S, Henderson R, Russo CJ. IUCrJ 6 1086-1098 (2019)
  46. Diverse cytomotive actins and tubulins share a polymerization switch mechanism conferring robust dynamics. Wagstaff JM, Planelles-Herrero VJ, Sharov G, Alnami A, Kozielski F, Derivery E, Löwe J. Sci Adv 9 eadf3021 (2023)
  47. Experimental evaluation of super-resolution imaging and magnification choice in single-particle cryo-EM. Feathers JR, Spoth KA, Fromme JC. J Struct Biol X 5 100047 (2021)
  48. Forty years in cryoEM of membrane proteins. Kühlbrandt W. Microscopy (Oxf) 71 i30-i50 (2022)
  49. High-resolution structural-omics of human liver enzymes. Su CC, Lyu M, Zhang Z, Miyagi M, Huang W, Taylor DJ, Yu EW. Cell Rep 42 112609 (2023)
  50. High-speed high-resolution data collection on a 200 keV cryo-TEM. Peck JV, Fay JF, Strauss JD. IUCrJ 9 243-252 (2022)
  51. Insights into the bilayer-mediated toppling mechanism of a folate-specific ECF transporter by cryo-EM. Thangaratnarajah C, Rheinberger J, Paulino C, Slotboom DJ. Proc Natl Acad Sci U S A 118 e2105014118 (2021)
  52. Melting of Hemoglobin in Native Solutions as measured by IMS-MS. Woodall DW, Brown CJ, Raab SA, El-Baba TJ, Laganowsky A, Russell DH, Clemmer DE. Anal Chem 92 3440-3446 (2020)
  53. Overcoming resolution attenuation during tilted cryo-EM data collection. Aiyer S, Baldwin PR, Tan SM, Shan Z, Oh J, Mehrani A, Bowman ME, Louie G, Passos DO, Đorđević-Marquardt S, Mietzsch M, Hull JA, Hoshika S, Barad BA, Grotjahn DA, McKenna R, Agbandje-McKenna M, Benner SA, Noel JAP, Wang D, Tan YZ, Lyumkis D. Nat Commun 15 389 (2024)
  54. Personalized structural biology reveals the molecular mechanisms underlying heterogeneous epileptic phenotypes caused by de novo KCNC2 variants. Mukherjee S, Cassini TA, Hu N, Yang T, Li B, Shen W, Moth CW, Rinker DC, Sheehan JH, Cogan JD, Undiagnosed Diseases Network, Newman JH, Hamid R, Macdonald RL, Roden DM, Meiler J, Kuenze G, Phillips JA, Capra JA. HGG Adv 3 100131 (2022)
  55. Probing allosteric interactions in homo-oligomeric molecular machines using solution NMR spectroscopy. Toyama Y, Kay LE. Proc Natl Acad Sci U S A 118 e2116325118 (2021)
  56. SARS-CoV-2 polyprotein substrate regulates the stepwise Mpro cleavage reaction. Narwal M, Armache JP, Edwards TJ, Murakami KS. J Biol Chem 299 104697 (2023)
  57. Separation and Collision Cross Section Measurements of Protein Complexes Afforded by a Modular Drift Tube Coupled to an Orbitrap Mass Spectrometer. Sipe SN, Sanders JD, Reinecke T, Clowers BH, Brodbelt JS. Anal Chem 94 9434-9441 (2022)
  58. Introductory Journal Article Structural biology: Gaining atomic level insight into the biological function of macromolecules. Thompson TB, Kovall RA. Exp Biol Med (Maywood) 244 1507-1509 (2019)
  59. Structure of the RhlR-PqsE complex from Pseudomonas aeruginosa reveals mechanistic insights into quorum-sensing gene regulation. Feathers JR, Richael EK, Simanek KA, Fromme JC, Paczkowski JE. Structure 30 1626-1636.e4 (2022)
  60. The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer. Jamali MAM, Gopalasingam CC, Johnson RM, Tosha T, Muramoto K, Muench SP, Antonyuk SV, Shiro Y, Hasnain SS. IUCrJ 7 404-415 (2020)
  61. The mechanism of kinesin inhibition by kinesin-binding protein. Atherton J, Hummel JJ, Olieric N, Locke J, Peña A, Rosenfeld SS, Steinmetz MO, Hoogenraad CC, Moores CA. Elife 9 (2020)
  62. Tools for visualizing and analyzing Fourier space sampling in Cryo-EM. Baldwin PR, Lyumkis D. Prog Biophys Mol Biol (2020)