6tcv Citations

Structural basis of mammalian high-mannose N-glycan processing by human gut Bacteroides.

OpenAccess logo Nat Commun 11 899 (2020)
Related entries: 6t8i, 6t8k, 6t8l, 6tcw

Cited: 18 times
EuropePMC logo PMID: 32060313

Abstract

The human gut microbiota plays a central role not only in regulating the metabolism of nutrients but also promoting immune homeostasis, immune responses and protection against pathogen colonization. The genome of the Gram-negative symbiont Bacteroides thetaiotaomicron, a dominant member of the human intestinal microbiota, encodes polysaccharide utilization loci PULs, the apparatus required to orchestrate the degradation of a specific glycan. EndoBT-3987 is a key endo-β-N-acetylglucosaminidase (ENGase) that initiates the degradation/processing of mammalian high-mannose-type (HM-type) N-glycans in the intestine. Here, we provide structural snapshots of EndoBT-3987, including the unliganded form, the EndoBT-3987-Man9GlcNAc2Asn substrate complex, and two EndoBT-3987-Man9GlcNAc and EndoBT-3987-Man5GlcNAc product complexes. In combination with alanine scanning mutagenesis and activity measurements we unveil the molecular mechanism of HM-type recognition and specificity for EndoBT-3987 and an important group of the GH18 ENGases, including EndoH, an enzyme extensively used in biotechnology, and for which the mechanism of substrate recognition was largely unknown.

Reviews - 6tcv mentioned but not cited (1)

  1. Sculpting therapeutic monoclonal antibody N-glycans using endoglycosidases. Trastoy B, Du JJ, García-Alija M, Li C, Klontz EH, Wang LX, Sundberg EJ, Guerin ME. Curr Opin Struct Biol 72 248-259 (2022)

Articles - 6tcv mentioned but not cited (1)

  1. Structural basis of mammalian high-mannose N-glycan processing by human gut Bacteroides. Trastoy B, Du JJ, Klontz EH, Li C, Cifuente JO, Wang LX, Sundberg EJ, Guerin ME. Nat Commun 11 899 (2020)


Reviews citing this publication (2)

  1. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Wardman JF, Bains RK, Rahfeld P, Withers SG. Nat Rev Microbiol 20 542-556 (2022)
  2. If you eat it, or secrete it, they will grow: the expanding list of nutrients utilized by human gut bacteria. Glowacki RWP, Martens EC. J Bacteriol JB.00481-20 (2020)

Articles citing this publication (14)

  1. Structural basis of mammalian mucin processing by the human gut O-glycopeptidase OgpA from Akkermansia muciniphila. Trastoy B, Naegeli A, Anso I, Sjögren J, Guerin ME. Nat Commun 11 4844 (2020)
  2. Host glycan utilization within the Bacteroidetes Sus-like paradigm. Brown HA, Koropatkin NM. Glycobiology 31 697-706 (2021)
  3. Characterizing human α-1,6-fucosyltransferase (FUT8) substrate specificity and structural similarities with related fucosyltransferases. Boruah BM, Kadirvelraj R, Liu L, Ramiah A, Li C, Zong G, Bosman GP, Yang JY, Wang LX, Boons GJ, Wood ZA, Moremen KW. J Biol Chem 295 17027-17045 (2020)
  4. FUT8-Directed Core Fucosylation of N-glycans Is Regulated by the Glycan Structure and Protein Environment. García-García A, Serna S, Yang Z, Delso I, Taleb V, Hicks T, Artschwager R, Vakhrushev SY, Clausen H, Angulo J, Corzana F, Reichardt NC, Hurtado-Guerrero R. ACS Catal 11 9052-9065 (2021)
  5. Reduced B12 uptake and increased gastrointestinal formate are associated with archaeome-mediated breath methane emission in humans. Kumpitsch C, Fischmeister FPS, Mahnert A, Lackner S, Wilding M, Sturm C, Springer A, Madl T, Holasek S, Högenauer C, Berg IA, Schoepf V, Moissl-Eichinger C. Microbiome 9 193 (2021)
  6. Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum. Cordeiro RL, Santos CR, Domingues MN, Lima TB, Pirolla RAS, Morais MAB, Colombari FM, Miyamoto RY, Persinoti GF, Borges AC, de Farias MA, Stoffel F, Li C, Gozzo FC, van Heel M, Guerin ME, Sundberg EJ, Wang LX, Portugal RV, Giuseppe PO, Murakami MT. Nat Chem Biol 19 218-229 (2023)
  7. GH18 endo-β-N-acetylglucosaminidases use distinct mechanisms to process hybrid-type N-linked glycans. Trastoy B, Du JJ, Li C, García-Alija M, Klontz EH, Roberts BR, Donahue TC, Wang LX, Sundberg EJ, Guerin ME. J Biol Chem 297 101011 (2021)
  8. Mechanism of cooperative N-glycan processing by the multi-modular endoglycosidase EndoE. García-Alija M, Du JJ, Ordóñez I, Diz-Vallenilla A, Moraleda-Montoya A, Sultana N, Huynh CG, Li C, Donahue TC, Wang LX, Trastoy B, Sundberg EJ, Guerin ME. Nat Commun 13 1137 (2022)
  9. Human Gut Metagenomes Encode Diverse GH156 Sialidases. Mann E, Shekarriz S, Surette MG. Appl Environ Microbiol 88 e0175522 (2022)
  10. Impact of Prebiotic β-glucan Treatment at Juvenile Age on the Gut Microbiota Composition and the Eventual Type 1 Diabetes Onset in Non-obese Diabetic Mice. Taylor HB, Vasu C. Front Nutr 8 769341 (2021)
  11. Technical pipeline for screening microbial communities as a function of substrate specificity through fluorescent labelling. Leivers S, Lagos L, Garbers P, La Rosa SL, Westereng B. Commun Biol 5 444 (2022)
  12. Integrative Proteomics and N-Glycoproteomics Analyses of Rheumatoid Arthritis Synovium Reveal Immune-Associated Glycopeptides. Xu Z, Liu Y, He S, Sun R, Zhu C, Li S, Hai S, Luo Y, Zhao Y, Dai L. Mol Cell Proteomics 22 100540 (2023)
  13. Characterization of a new family of 6-sulfo-N-acetylglucosaminidases. Bains RK, Nasseri SA, Liu F, Wardman JF, Rahfeld P, Withers SG. J Biol Chem 299 105214 (2023)
  14. Mechanism of antibody-specific deglycosylation and immune evasion by Streptococcal IgG-specific endoglycosidases. Trastoy B, Du JJ, Cifuente JO, Rudolph L, García-Alija M, Klontz EH, Deredge D, Sultana N, Huynh CG, Flowers MW, Li C, Sastre DE, Wang LX, Corzana F, Mallagaray A, Sundberg EJ, Guerin ME. Nat Commun 14 1705 (2023)