6yo0 Citations

Type III ATP synthase is a symmetry-deviated dimer that induces membrane curvature through tetramerization.

OpenAccess logo Nat Commun 11 5342 (2020)
Related entries: 6ynv, 6ynw, 6ynx, 6yny, 6ynz

Cited: 19 times
EuropePMC logo PMID: 33093501

Abstract

Mitochondrial ATP synthases form functional homodimers to induce cristae curvature that is a universal property of mitochondria. To expand on the understanding of this fundamental phenomenon, we characterized the unique type III mitochondrial ATP synthase in its dimeric and tetrameric form. The cryo-EM structure of a ciliate ATP synthase dimer reveals an unusual U-shaped assembly of 81 proteins, including a substoichiometrically bound ATPTT2, 40 lipids, and co-factors NAD and CoQ. A single copy of subunit ATPTT2 functions as a membrane anchor for the dimeric inhibitor IF1. Type III specific linker proteins stably tie the ATP synthase monomers in parallel to each other. The intricate dimer architecture is scaffolded by an extended subunit-a that provides a template for both intra- and inter-dimer interactions. The latter results in the formation of tetramer assemblies, the membrane part of which we determined to 3.1 Å resolution. The structure of the type III ATP synthase tetramer and its associated lipids suggests that it is the intact unit propagating the membrane curvature.

Reviews citing this publication (5)

  1. Redesigned and reversed: architectural and functional oddities of the trypanosomal ATP synthase. Gahura O, Hierro-Yap C, Zíková A. Parasitology 148 1151-1160 (2021)
  2. The mystery of massive mitochondrial complexes: the apicomplexan respiratory chain. Maclean AE, Hayward JA, Huet D, van Dooren GG, Sheiner L. Trends Parasitol 38 1041-1052 (2022)
  3. CryoEM Reveals the Complexity and Diversity of ATP Synthases. Courbon GM, Rubinstein JL. Front Microbiol 13 864006 (2022)
  4. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA. Cell Death Differ 30 1869-1885 (2023)
  5. The ATPase Inhibitory Factor 1 is a Tissue-Specific Physiological Regulator of the Structure and Function of Mitochondrial ATP Synthase: A Closer Look Into Neuronal Function. Domínguez-Zorita S, Romero-Carramiñana I, Cuezva JM, Esparza-Moltó PB. Front Physiol 13 868820 (2022)

Articles citing this publication (14)

  1. Interface mobility between monomers in dimeric bovine ATP synthase participates in the ultrastructure of inner mitochondrial membranes. Spikes TE, Montgomery MG, Walker JE. Proc Natl Acad Sci U S A 118 e2021012118 (2021)
  2. Cryo-EM grid optimization for membrane proteins. Kampjut D, Steiner J, Sazanov LA. iScience 24 102139 (2021)
  3. An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases. Gahura O, Mühleip A, Hierro-Yap C, Panicucci B, Jain M, Hollaus D, Slapničková M, Zíková A, Amunts A. Nat Commun 13 5989 (2022)
  4. The persistent homology of mitochondrial ATP synthases. Sinha SD, Wideman JG. iScience 26 106700 (2023)
  5. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Mühleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, Amunts A. Nat Commun 12 120 (2021)
  6. ATP yield of plant respiration: potential, actual and unknown. Amthor JS. Ann Bot 132 133-162 (2023)
  7. Activity modulation of the Escherichia coli F1FO ATP synthase by a designed antimicrobial peptide via cardiolipin sequestering. Makowski M, Almendro-Vedia VG, Domingues MM, Franco OL, López-Montero I, Melo MN, Santos NC. iScience 26 107004 (2023)
  8. Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex. Naschberger A, Mosebach L, Tobiasson V, Kuhlgert S, Scholz M, Perez-Boerema A, Ho TTH, Vidal-Meireles A, Takahashi Y, Hippler M, Amunts A. Nat Plants 8 1191-1201 (2022)
  9. Characterization of a highly diverged mitochondrial ATP synthase Fo subunit in Trypanosoma brucei. Dewar CE, Oeljeklaus S, Wenger C, Warscheid B, Schneider A. J Biol Chem 298 101829 (2022)
  10. Structural basis of mitochondrial membrane bending by the I-II-III2-IV2 supercomplex. Mühleip A, Flygaard RK, Baradaran R, Haapanen O, Gruhl T, Tobiasson V, Maréchal A, Sharma V, Amunts A. Nature 615 934-938 (2023)
  11. Structure of ATP synthase under strain during catalysis. Guo H, Rubinstein JL. Nat Commun 13 2232 (2022)
  12. Structures of Tetrahymena's respiratory chain reveal the diversity of eukaryotic core metabolism. Zhou L, Maldonado M, Padavannil A, Guo F, Letts JA. Science 376 831-839 (2022)
  13. Structures of Tetrahymena thermophila respiratory megacomplexes on the tubular mitochondrial cristae. Han F, Hu Y, Wu M, He Z, Tian H, Zhou L. Nat Commun 14 2542 (2023)
  14. The Ancestral Shape of the Access Proton Path of Mitochondrial ATP Synthases Revealed by a Split Subunit-a. Wong JE, Zíková A, Gahura O. Mol Biol Evol 40 msad146 (2023)