7akd Citations

Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11.

Abstract

The emergence of SARS-CoV-2 antibody escape mutations highlights the urgent need for broadly neutralizing therapeutics. We previously identified a human monoclonal antibody, 47D11, capable of cross-neutralizing SARS-CoV-2 and SARS-CoV and protecting against the associated respiratory disease in an animal model. Here, we report cryo-EM structures of both trimeric spike ectodomains in complex with the 47D11 Fab. 47D11 binds to the closed receptor-binding domain, distal to the ACE2 binding site. The CDRL3 stabilizes the N343 glycan in an upright conformation, exposing a mutationally constrained hydrophobic pocket, into which the CDRH3 loop inserts two aromatic residues. 47D11 stabilizes a partially open conformation of the SARS-CoV-2 spike, suggesting that it could be used effectively in combination with other antibodies targeting the exposed receptor-binding motif. Together, these results reveal a cross-protective epitope on the SARS-CoV-2 spike and provide a structural roadmap for the development of 47D11 as a prophylactic or postexposure therapy for COVID-19.

Reviews - 7akd mentioned but not cited (3)

  1. Monoclonal antibody therapies against SARS-CoV-2. Focosi D, McConnell S, Casadevall A, Cappello E, Valdiserra G, Tuccori M. Lancet Infect Dis 22 e311-e326 (2022)
  2. Virus structure and structure-based antivirals. Plavec Z, Pöhner I, Poso A, Butcher SJ. Curr Opin Virol 51 16-24 (2021)
  3. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. BioDrugs 36 231-323 (2022)

Articles - 7akd mentioned but not cited (5)

  1. Cryo-EM structure of a SARS-CoV-2 omicron spike protein ectodomain. Ye G, Liu B, Li F. Nat Commun 13 1214 (2022)
  2. Omicron (B.1.1.529) - A new heavily mutated variant: Mapped location and probable properties of its mutations with an emphasis on S-glycoprotein. Chakraborty C, Bhattacharya M, Sharma AR, Mallik B. Int J Biol Macromol 219 980-997 (2022)
  3. Structure and Mutations of SARS-CoV-2 Spike Protein: A Focused Overview. Mehra R, Kepp KP. ACS Infect Dis 8 29-58 (2022)
  4. Comprehensive structural analysis reveals broad-spectrum neutralizing antibodies against SARS-CoV-2 Omicron variants. Chi X, Xia L, Zhang G, Chi X, Huang B, Zhang Y, Chen Z, Han J, Wu L, Li Z, Sun H, Huang P, Yu C, Chen W, Zhou Q. Cell Discov 9 37 (2023)
  5. Lys417 acts as a molecular switch that regulates the conformation of SARS-CoV-2 spike protein. Geng Q, Wan Y, Hsueh FC, Shang J, Ye G, Bu F, Herbst M, Wilkens R, Liu B, Li F. Elife 12 e74060 (2023)


Reviews citing this publication (10)

  1. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. Hwang YC, Lu RM, Su SC, Chiang PY, Ko SH, Ke FY, Liang KH, Hsieh TY, Wu HC. J Biomed Sci 29 1 (2022)
  2. Broad strategies for neutralizing SARS-CoV-2 and other human coronaviruses with monoclonal antibodies. Ling Z, Yi C, Sun X, Yang Z, Sun B. Sci China Life Sci 66 658-678 (2023)
  3. Epitope mapping of neutralising anti-SARS-CoV-2 monoclonal antibodies: Implications for immunotherapy and vaccine design. Ghotloo S, Maghsood F, Golsaz-Shirazi F, Amiri MM, Moog C, Shokri F. Rev Med Virol 32 e2347 (2022)
  4. Evolution of SARS-CoV-2 Variants: Implications on Immune Escape, Vaccination, Therapeutic and Diagnostic Strategies. Zabidi NZ, Liew HL, Farouk IA, Puniyamurti A, Yip AJW, Wijesinghe VN, Low ZY, Tang JW, Chow VTK, Lal SK. Viruses 15 944 (2023)
  5. Contributions of single-particle cryoelectron microscopy toward fighting COVID-19. Rapp M, Shapiro L, Frank J. Trends Biochem Sci 47 117-123 (2022)
  6. Monoclonal antibodies: a remedial approach to prevent SARS-CoV-2 infection. Kumar S, Dutta D, Ravichandiran V, Sukla S. 3 Biotech 12 227 (2022)
  7. Possible Targets of Pan-Coronavirus Antiviral Strategies for Emerging or Re-Emerging Coronaviruses. Li X, Zhang L, Chen S, Ouyang H, Ren L. Microorganisms 9 1479 (2021)
  8. The emergence of SARS-CoV-2 variants threatens to decrease the efficacy of neutralizing antibodies and vaccines. Murano K, Guo Y, Siomi H. Biochem Soc Trans 49 2879-2890 (2021)
  9. A structural view of the SARS-CoV-2 virus and its assembly. Hardenbrook NJ, Zhang P. Curr Opin Virol 52 123-134 (2022)
  10. Immunomodulation and immunotherapeutics of COVID-19. Garg SS, Sharma A, Gupta J. Clin Immunol 231 108842 (2021)

Articles citing this publication (18)

  1. Seasonal coronavirus-specific B cells with limited SARS-CoV-2 cross-reactivity dominate the IgG response in severe COVID-19. Aguilar-Bretones M, Westerhuis BM, Raadsen MP, de Bruin E, Chandler FD, Okba NM, Haagmans BL, Langerak T, Endeman H, van den Akker JP, Gommers DA, van Gorp EC, GeurtsvanKessel CH, de Vries RD, Fouchier RA, Rockx BH, Koopmans MP, van Nierop GP. J Clin Invest 131 e150613 (2021)
  2. A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo. Hanke L, Das H, Sheward DJ, Perez Vidakovics L, Urgard E, Moliner-Morro A, Kim C, Karl V, Pankow A, Smith NL, Porebski B, Fernandez-Capetillo O, Sezgin E, Pedersen GK, Coquet JM, Hällberg BM, Murrell B, McInerney GM. Nat Commun 13 155 (2022)
  3. An antibody that neutralizes SARS-CoV-1 and SARS-CoV-2 by binding to a conserved spike epitope outside the receptor binding motif. Fang Y, Sun P, Xie X, Du M, Du F, Ye J, Kalveram BK, Plante JA, Plante KS, Li B, Bai XC, Shi PY, Chen ZJ. Sci Immunol 7 eabp9962 (2022)
  4. Characterization of cross-reactive monoclonal antibodies against SARS-CoV-1 and SARS-CoV-2: Implication for rational design and development of pan-sarbecovirus vaccines and neutralizing antibodies. Li S, Wu J, Jiang W, He H, Zhou Y, Wu W, Gao Y, Xie M, Xia A, He J, Zhang Q, Han Y, Wang N, Zhu G, Wang Q, Zhang Z, Mayer CT, Wang K, Wang X, Wang J, Chen Z, Jiang S, Sun L, Xia R, Wang Q. J Med Virol 95 e28440 (2023)
  5. Engineering SARS-CoV-2 neutralizing antibodies for increased potency and reduced viral escape pathways. Zhao F, Keating C, Ozorowski G, Shaabani N, Francino-Urdaniz IM, Barman S, Limbo O, Burns A, Zhou P, Ricciardi MJ, Woehl J, Tran Q, Turner HL, Peng L, Huang D, Nemazee D, Andrabi R, Sok D, Teijaro JR, Whitehead TA, Ward AB, Burton DR, Jardine JG. iScience 25 104914 (2022)
  6. Nanobodies with cross-neutralizing activity provide prominent therapeutic efficacy in mild and severe COVID-19 rodent models. Han Q, Wang S, Wang Z, Zhang C, Wang X, Feng N, Wang T, Zhao Y, Chi H, Yan F, Xia X. Virol Sin 38 787-800 (2023)
  7. Broadly neutralizing and protective nanobodies against SARS-CoV-2 Omicron subvariants BA.1, BA.2, and BA.4/5 and diverse sarbecoviruses. Li M, Ren Y, Aw ZQ, Chen B, Yang Z, Lei Y, Cheng L, Liang Q, Hong J, Yang Y, Chen J, Wong YH, Wei J, Shan S, Zhang S, Ge J, Wang R, Dong JZ, Chen Y, Shi X, Zhang Q, Zhang Z, Chu JJH, Wang X, Zhang L. Nat Commun 13 7957 (2022)
  8. Capturing a Crucial 'Disorder-to-Order Transition' at the Heart of the Coronavirus Molecular Pathology-Triggered by Highly Persistent, Interchangeable Salt-Bridges. Roy S, Ghosh P, Bandyopadhyay A, Basu S. Vaccines (Basel) 10 301 (2022)
  9. Cryptic-site-specific antibodies to the SARS-CoV-2 receptor binding domain can retain functional binding affinity to spike variants. Li K, Huntwork RHC, Horn GQ, Abraha M, Hastie KM, Li H, Rayaprolu V, Olmedillas E, Feeney E, Cronin K, Schendel SL, Heise M, Bedinger D, Mattocks MD, Baric RS, Alam SM, Ollmann Saphire E, Tomaras GD, Dennison SM. J Virol 97 e0107023 (2023)
  10. De novo design and Rosetta-based assessment of high-affinity antibody variable regions (Fv) against the SARS-CoV-2 spike receptor binding domain (RBD). Boorla VS, Chowdhury R, Ramasubramanian R, Ameglio B, Frick R, Gray JJ, Maranas CD. Proteins 91 196-208 (2023)
  11. Disulfide stabilization reveals conserved dynamic features between SARS-CoV-1 and SARS-CoV-2 spikes. Zhang X, Li Z, Zhang Y, Liu Y, Wang J, Liu B, Chen Q, Wang Q, Fu L, Wang P, Zhong X, Jin L, Yan Q, Chen L, He J, Zhao J, Xiong X. Life Sci Alliance 6 e202201796 (2023)
  12. Lectin Fingerprinting Distinguishes Antibody Neutralization in SARS-CoV-2. Wuo MG, Dugan AE, Halim M, Hauser BM, Feldman J, Caradonna TM, Zhang S, Pepi LE, Atyeo C, Fischinger S, Alter G, Garcia-Beltran WF, Azadi P, Hung D, Schmidt AG, Kiessling LL. ACS Cent Sci 9 947-956 (2023)
  13. Neutralization or enhancement of SARS-CoV-2 infection by a monoclonal antibody targeting a specific epitope in the spike receptor-binding domain. Lai GC, Chao TL, Lin SY, Kao HC, Tsai YM, Lu DC, Chiang YW, Chang SY, Chang SC. Antiviral Res 200 105290 (2022)
  14. Neutralizing Monoclonal Antibodies Inhibit SARS-CoV-2 Infection through Blocking Membrane Fusion. Li CJ, Chao TL, Chang TY, Hsiao CC, Lu DC, Chiang YW, Lai GC, Tsai YM, Fang JT, Ieong S, Wang JT, Chang SY, Chang SC. Microbiol Spectr 10 e0181421 (2022)
  15. Omicron BQ.1.1 and XBB.1 unprecedentedly escape broadly neutralizing antibodies elicited by prototype vaccination. Ju B, Fan Q, Liu C, Shen S, Wang M, Guo H, Zhou B, Ge X, Zhang Z. Cell Rep 42 112532 (2023)
  16. Phase 1 study of safety, pharmacokinetics, and antiviral activity of SARS-CoV-2 neutralizing monoclonal antibody ABBV-47D11 in patients with COVID-19. Shebley M, Wang S, Ali I, Krishnan P, Tripathi R, Reardon JM, Cafardi J, Rahav G, Caraco Y, Slim J, Al Akhrass F, Yu M, Hu Y, Ferreira RA, Alami NN. Pharmacol Res Perspect 11 e01036 (2023)
  17. Protease-Responsive Peptide-Conjugated Mitochondrial-Targeting AIEgens for Selective Imaging and Inhibition of SARS-CoV-2-Infected Cells. Cheng Y, Clark AE, Zhou J, He T, Li Y, Borum RM, Creyer MN, Xu M, Jin Z, Zhou J, Yim W, Wu Z, Fajtová P, O'Donoghue AJ, Carlin AF, Jokerst JV. ACS Nano 16 12305-12317 (2022)
  18. Therapeutic equine hyperimmune antibodies with high and broad-spectrum neutralizing activity protect rodents against SARS-CoV-2 infection. Li E, Han Q, Bi J, Wei S, Wang S, Zhang Y, Liu J, Feng N, Wang T, Wu J, Yang S, Zhao Y, Liu B, Yan F, Xia X. Front Immunol 14 1066730 (2023)