7cm5 Citations

The NAD+-mediated self-inhibition mechanism of pro-neurodegenerative SARM1.

Nature 588 658-663 (2020)
Related entries: 7cm6, 7cm7

Cited: 75 times
EuropePMC logo PMID: 33053563

Abstract

Pathological degeneration of axons disrupts neural circuits and represents one of the hallmarks of neurodegeneration1-4. Sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 (SARM1) is a central regulator of this neurodegenerative process5-8, and its Toll/interleukin-1 receptor (TIR) domain exerts its pro-neurodegenerative action through NADase activity9,10. However, the mechanisms by which the activation of SARM1 is stringently controlled are unclear. Here we report the cryo-electron microscopy structures of full-length SARM1 proteins. We show that NAD+ is an unexpected ligand of the armadillo/heat repeat motifs (ARM) domain of SARM1. This binding of NAD+ to the ARM domain facilitated the inhibition of the TIR-domain NADase through the domain interface. Disruption of the NAD+-binding site or the ARM-TIR interaction caused constitutive activation of SARM1 and thereby led to axonal degeneration. These findings suggest that NAD+ mediates self-inhibition of this central pro-neurodegenerative protein.

Articles - 7cm5 mentioned but not cited (1)

  1. Neurotoxin-mediated potent activation of the axon degeneration regulator SARM1. Loreto A, Angeletti C, Gu W, Osborne A, Nieuwenhuis B, Gilley J, Merlini E, Arthur-Farraj P, Amici A, Luo Z, Hartley-Tassell L, Ve T, Desrochers LM, Wang Q, Kobe B, Orsomando G, Coleman MP. Elife 10 e72823 (2021)


Reviews citing this publication (27)

  1. The landscape of aging. Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JJ, Liu GH. Sci China Life Sci 65 2354-2454 (2022)
  2. Evolving concepts in NAD+ metabolism. Chini CCS, Zeidler JD, Kashyap S, Warner G, Chini EN. Cell Metab 33 1076-1087 (2021)
  3. Neuroinflammation as the Underlying Mechanism of Postoperative Cognitive Dysfunction and Therapeutic Strategies. Li Z, Zhu Y, Kang Y, Qin S, Chai J. Front Cell Neurosci 16 843069 (2022)
  4. Lessons from Injury: How Nerve Injury Studies Reveal Basic Biological Mechanisms and Therapeutic Opportunities for Peripheral Nerve Diseases. Arthur-Farraj P, Coleman MP. Neurotherapeutics 18 2200-2221 (2021)
  5. A Novel NAD Signaling Mechanism in Axon Degeneration and its Relationship to Innate Immunity. Hopkins EL, Gu W, Kobe B, Coleman MP. Front Mol Biosci 8 703532 (2021)
  6. Nicotinamide adenine dinucleotide metabolism in the immune response, autoimmunity and inflammageing. Navarro MN, Gómez de Las Heras MM, Mittelbrunn M. Br J Pharmacol 179 1839-1856 (2022)
  7. The Influence of Mitochondrial Dynamics and Function on Retinal Ganglion Cell Susceptibility in Optic Nerve Disease. Muench NA, Patel S, Maes ME, Donahue RJ, Ikeda A, Nickells RW. Cells 10 1593 (2021)
  8. SARM1 signaling mechanisms in the injured nervous system. Sambashivan S, Freeman MR. Curr Opin Neurobiol 69 247-255 (2021)
  9. Structural Evolution of TIR-Domain Signalosomes. Nimma S, Gu W, Maruta N, Li Y, Pan M, Saikot FK, Lim BYJ, McGuinness HY, Zaoti ZF, Li S, Desa S, Manik MK, Nanson JD, Kobe B. Front Immunol 12 784484 (2021)
  10. Targeting Diet and Exercise for Neuroprotection and Neurorecovery in Glaucoma. Tribble JR, Hui F, Jöe M, Bell K, Chrysostomou V, Crowston JG, Williams PA. Cells 10 295 (2021)
  11. NAD+ Metabolism, Metabolic Stress, and Infection. Groth B, Venkatakrishnan P, Lin SJ. Front Mol Biosci 8 686412 (2021)
  12. The SARM1 TIR NADase: Mechanistic Similarities to Bacterial Phage Defense and Toxin-Antitoxin Systems. DiAntonio A, Milbrandt J, Figley MD. Front Immunol 12 752898 (2021)
  13. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Yang S, Park JH, Lu HC. Mol Neurodegener 18 49 (2023)
  14. Multifaceted roles of SARM1 in axon degeneration and signaling. Waller TJ, Collins CA. Front Cell Neurosci 16 958900 (2022)
  15. Neuroinflammation in Prion Disease. Li B, Chen M, Zhu C. Int J Mol Sci 22 2196 (2021)
  16. The chemical biology of NAD+ regulation in axon degeneration. Icso JD, Thompson PR. Curr Opin Chem Biol 69 102176 (2022)
  17. Axon Biology in ALS: Mechanisms of Axon Degeneration and Prospects for Therapy. Coleman MP. Neurotherapeutics 19 1133-1144 (2022)
  18. NAD+ metabolism-based immunoregulation and therapeutic potential. Fang J, Chen W, Hou P, Liu Z, Zuo M, Liu S, Feng C, Han Y, Li P, Shi Y, Shao C. Cell Biosci 13 81 (2023)
  19. NAD+-dependent mechanism of pathological axon degeneration. Cao Y, Wang Y, Yang J. Cell Insight 1 100019 (2022)
  20. SARM1 can be a potential therapeutic target for spinal cord injury. Lu Q, Botchway BOA, Zhang Y, Jin T, Liu X. Cell Mol Life Sci 79 161 (2022)
  21. A Glimpse of Programmed Cell Death Among Bacteria, Animals, and Plants. Zhuang J, Xie L, Zheng L. Front Cell Dev Biol 9 790117 (2021)
  22. NAD+, Axonal Maintenance, and Neurological Disease. Alexandris AS, Koliatsos VE. Antioxid Redox Signal 39 1167-1184 (2023)
  23. Of axons that struggle to make ends meet: Linking axonal bioenergetic failure to programmed axon degeneration. Babetto E, Beirowski B. Biochim Biophys Acta Bioenerg 1863 148545 (2022)
  24. Axonal degeneration in chemotherapy-induced peripheral neurotoxicity: clinical and experimental evidence. Park SB, Cetinkaya-Fisgin A, Argyriou AA, Höke A, Cavaletti G, Alberti P. J Neurol Neurosurg Psychiatry 94 962-972 (2023)
  25. Targeting NAD Metabolism for the Therapy of Age-Related Neurodegenerative Diseases. Li F, Wu C, Wang G. Neurosci Bull 40 218-240 (2024)
  26. The significance of M1 macrophage should be highlighted in peripheral nerve regeneration. Feng R, Zhang P. Histol Histopathol 38 975-987 (2023)
  27. Detergents and alternatives in cryo-EM studies of membrane proteins. Li S. Acta Biochim Biophys Sin (Shanghai) 54 1049-1056 (2022)

Articles citing this publication (47)

  1. SARM1 is a metabolic sensor activated by an increased NMN/NAD+ ratio to trigger axon degeneration. Figley MD, Gu W, Nanson JD, Shi Y, Sasaki Y, Cunnea K, Malde AK, Jia X, Luo Z, Saikot FK, Mosaiab T, Masic V, Holt S, Hartley-Tassell L, McGuinness HY, Manik MK, Bosanac T, Landsberg MJ, Kerry PS, Mobli M, Hughes RO, Milbrandt J, Kobe B, DiAntonio A, Ve T. Neuron 109 1118-1136.e11 (2021)
  2. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Tal N, Morehouse BR, Millman A, Stokar-Avihail A, Avraham C, Fedorenko T, Yirmiya E, Herbst E, Brandis A, Mehlman T, Oppenheimer-Shaanan Y, Keszei AFA, Shao S, Amitai G, Kranzusch PJ, Sorek R. Cell 184 5728-5739.e16 (2021)
  3. Structural basis for SARM1 inhibition and activation under energetic stress. Sporny M, Guez-Haddad J, Khazma T, Yaron A, Dessau M, Shkolnisky Y, Mim C, Isupov MN, Zalk R, Hons M, Opatowsky Y. Elife 9 e62021 (2020)
  4. Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules. Shi Y, Kerry PS, Nanson JD, Bosanac T, Sasaki Y, Krauss R, Saikot FK, Adams SE, Mosaiab T, Masic V, Mao X, Rose F, Vasquez E, Furrer M, Cunnea K, Brearley A, Gu W, Luo Z, Brillault L, Landsberg MJ, DiAntonio A, Kobe B, Milbrandt J, Hughes RO, Ve T. Mol Cell 82 1643-1659.e10 (2022)
  5. SARM1 is a multi-functional NAD(P)ase with prominent base exchange activity, all regulated bymultiple physiologically relevant NAD metabolites. Angeletti C, Amici A, Gilley J, Loreto A, Trapanotto AG, Antoniou C, Merlini E, Coleman MP, Orsomando G. iScience 25 103812 (2022)
  6. Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients. Bloom AJ, Mao X, Strickland A, Sasaki Y, Milbrandt J, DiAntonio A. Mol Neurodegener 17 1 (2022)
  7. Enrichment of SARM1 alleles encoding variants with constitutively hyperactive NADase in patients with ALS and other motor nerve disorders. Gilley J, Jackson O, Pipis M, Estiar MA, Al-Chalabi A, Danzi MC, van Eijk KR, Goutman SA, Harms MB, Houlden H, Iacoangeli A, Kaye J, Lima L, Queen Square Genomics, Ravits J, Rouleau GA, Schüle R, Xu J, Züchner S, Cooper-Knock J, Gan-Or Z, Reilly MM, Coleman MP. Elife 10 e70905 (2021)
  8. Live imaging reveals the cellular events downstream of SARM1 activation. Ko KW, Devault L, Sasaki Y, Milbrandt J, DiAntonio A. Elife 10 e71148 (2021)
  9. Abnormal levels of mitochondrial proteins in plasma neuronal extracellular vesicles in major depressive disorder. Goetzl EJ, Wolkowitz OM, Srihari VH, Reus VI, Goetzl L, Kapogiannis D, Heninger GR, Mellon SH. Mol Psychiatry 26 7355-7362 (2021)
  10. Multiple domain interfaces mediate SARM1 autoinhibition. Shen C, Vohra M, Zhang P, Mao X, Figley MD, Zhu J, Sasaki Y, Wu H, DiAntonio A, Milbrandt J. Proc Natl Acad Sci U S A 118 e2023151118 (2021)
  11. Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti-neurodegenerative drug candidate. Li WH, Huang K, Cai Y, Wang QW, Zhu WJ, Hou YN, Wang S, Cao S, Zhao ZY, Xie XJ, Du Y, Lee CS, Lee HC, Zhang H, Zhao YJ. Elife 10 e67381 (2021)
  12. Pathogen infection and cholesterol deficiency activate the C. elegans p38 immune pathway through a TIR-1/SARM1 phase transition. Peterson ND, Icso JD, Salisbury JE, Rodríguez T, Thompson PR, Pukkila-Worley R. Elife 11 e74206 (2022)
  13. Selective inhibitors of SARM1 targeting an allosteric cysteine in the autoregulatory ARM domain. Feldman HC, Merlini E, Guijas C, DeMeester KE, Njomen E, Kozina EM, Yokoyama M, Vinogradova E, Reardon HT, Melillo B, Schreiber SL, Loreto A, Blankman JL, Cravatt BF. Proc Natl Acad Sci U S A 119 e2208457119 (2022)
  14. Nicotinic acid mononucleotide is an allosteric SARM1 inhibitor promoting axonal protection. Sasaki Y, Zhu J, Shi Y, Gu W, Kobe B, Ve T, DiAntonio A, Milbrandt J. Exp Neurol 345 113842 (2021)
  15. A phase transition enhances the catalytic activity of SARM1, an NAD+ glycohydrolase involved in neurodegeneration. Loring HS, Czech VL, Icso JD, O'Connor L, Parelkar SS, Byrne AB, Thompson PR. Elife 10 e66694 (2021)
  16. Genetic inactivation of SARM1 axon degeneration pathway improves outcome trajectory after experimental traumatic brain injury based on pathological, radiological, and functional measures. Bradshaw DV, Knutsen AK, Korotcov A, Sullivan GM, Radomski KL, Dardzinski BJ, Zi X, McDaniel DP, Armstrong RC. Acta Neuropathol Commun 9 89 (2021)
  17. Phagocytosis and self-destruction break down dendrites of Drosophila sensory neurons at distinct steps of Wallerian degeneration. Ji H, Sapar ML, Sarkar A, Wang B, Han C. Proc Natl Acad Sci U S A 119 e2111818119 (2022)
  18. Neurotoxins subvert the allosteric activation mechanism of SARM1 to induce neuronal loss. Wu T, Zhu J, Strickland A, Ko KW, Sasaki Y, Dingwall CB, Yamada Y, Figley MD, Mao X, Neiner A, Bloom AJ, DiAntonio A, Milbrandt J. Cell Rep 37 109872 (2021)
  19. Sarm1-mediated neurodegeneration within the enteric nervous system protects against local inflammation of the colon. Sun Y, Wang Q, Wang Y, Ren W, Cao Y, Li J, Zhou X, Fu W, Yang J. Protein Cell 12 621-638 (2021)
  20. The intrinsic role and mechanism of tumor expressed-CD38 on lung adenocarcinoma progression. Gao L, Liu Y, Du X, Ma S, Ge M, Tang H, Han C, Zhao X, Liu Y, Shao Y, Wu Z, Zhang L, Meng F, Xiao-Feng Qin F. Cell Death Dis 12 680 (2021)
  21. Divergent signaling requirements of dSARM in injury-induced degeneration and developmental glial phagocytosis. Herrmann KA, Liu Y, Llobet-Rosell A, McLaughlin CN, Neukomm LJ, Coutinho-Budd JC, Broihier HT. PLoS Genet 18 e1010257 (2022)
  22. SARM1 Ablation Is Protective and Preserves Spatial Vision in an In Vivo Mouse Model of Retinal Ganglion Cell Degeneration. Finnegan LK, Chadderton N, Kenna PF, Palfi A, Carty M, Bowie AG, Millington-Ward S, Farrar GJ. Int J Mol Sci 23 1606 (2022)
  23. Distinct developmental and degenerative functions of SARM1 require NAD+ hydrolase activity. Brace EJ, Essuman K, Mao X, Palucki J, Sasaki Y, Milbrandt J, DiAntonio A. PLoS Genet 18 e1010246 (2022)
  24. CRISPR/Cas9-mediated SARM1 knockout and epitope-tagged mice reveal that SARM1 does not regulate nuclear transcription, but is expressed in macrophages. Doran CG, Sugisawa R, Carty M, Roche F, Fergus C, Hokamp K, Kelly VP, Bowie AG. J Biol Chem 297 101417 (2021)
  25. Protective effects of NAMPT or MAPK inhibitors and NaR on Wallerian degeneration of mammalian axons. Alexandris AS, Ryu J, Rajbhandari L, Harlan R, McKenney J, Wang Y, Aja S, Graham D, Venkatesan A, Koliatsos VE. Neurobiol Dis 171 105808 (2022)
  26. Receptor for advanced glycation end products aggravates cognitive deficits in type 2 diabetes through binding of C-terminal AAs 2-5 to mitogen-activated protein kinase kinase 3 (MKK3) and facilitation of MEKK3-MKK3-p38 module assembly. Zhou XY, Ying CJ, Hu B, Zhang YS, Gan T, Zhu YD, Wang N, Li AA, Song YJ. Aging Cell 21 e13543 (2022)
  27. Structural insights into mechanisms of Argonaute protein-associated NADase activation in bacterial immunity. Wang X, Li X, Yu G, Zhang L, Zhang C, Wang Y, Liao F, Wen Y, Yin H, Liu X, Wei Y, Li Z, Deng Z, Zhang H. Cell Res 33 699-711 (2023)
  28. The NAD+ precursor NMN activates dSarm to trigger axon degeneration in Drosophila. Llobet Rosell A, Paglione M, Gilley J, Kocia M, Perillo G, Gasparrini M, Cialabrini L, Raffaelli N, Angeletti C, Orsomando G, Wu PH, Coleman MP, Loreto A, Neukomm LJ. Elife 11 e80245 (2022)
  29. A conformation-specific nanobody targeting the nicotinamide mononucleotide-activated state of SARM1. Hou YN, Cai Y, Li WH, He WM, Zhao ZY, Zhu WJ, Wang Q, Mai X, Liu J, Lee HC, Stjepanovic G, Zhang H, Zhao YJ. Nat Commun 13 7898 (2022)
  30. Macrophage depletion blocks congenital SARM1-dependent neuropathy. Dingwall CB, Strickland A, Yum SW, Yim AK, Zhu J, Wang PL, Yamada Y, Schmidt RE, Sasaki Y, Bloom AJ, DiAntonio A, Milbrandt J. J Clin Invest 132 e159800 (2022)
  31. Tuning the Size of Large Dense-Core Vesicles and Quantal Neurotransmitter Release via Secretogranin II Liquid-Liquid Phase Separation. Lin Z, Li Y, Hang Y, Wang C, Liu B, Li J, Yin L, Jiang X, Du X, Qiao Z, Zhu F, Zhang Z, Zhang Q, Zhou Z. Adv Sci (Weinh) 9 e2202263 (2022)
  32. TIR-1/SARM1 inhibits axon regeneration and promotes axon degeneration. Czech VL, O'Connor LC, Philippon B, Norman E, Byrne AB. Elife 12 e80856 (2023)
  33. Identification of Ubr1 as an amino acid sensor of steatosis in liver and muscle. Zhao W, Zhang Y, Lin S, Li Y, Zhu AJ, Shi H, Liu M. J Cachexia Sarcopenia Muscle 14 1454-1467 (2023)
  34. SARM1, an Enzyme Involved in Axon Degeneration, Catalyzes Multiple Activities through a Ternary Complex Mechanism. Icso JD, Barasa L, Thompson PR. Biochemistry 62 2065-2078 (2023)
  35. Sexually dimorphic effects of SARM1 deletion on cardiac NAD+ metabolism and function. Nizami HL, Minor KE, Chiao YA, Light CM, Lee CF. Am J Physiol Heart Circ Physiol 323 H774-H781 (2022)
  36. Discovery of a novel NAMPT inhibitor that selectively targets NAPRT-deficient EMT-subtype cancer cells and alleviates chemotherapy-induced peripheral neuropathy. Kim M, Kim H, Kang BG, Lee J, Kim T, Lee H, Jung J, Oh MJ, Seo S, Ryu MJ, Sung Y, Lee Y, Yeom J, Han G, Cha SS, Jung H, Kim HS. Theranostics 13 5075-5098 (2023)
  37. Highly selective acid-catalyzed olefin isomerization of limonene to terpinolene by kinetic suppression of overreactions in a confined space of porous metal-macrocycle frameworks. He W, Tashiro S, Shionoya M. Chem Sci 13 8752-8758 (2022)
  38. Natural variants of human SARM1 cause both intrinsic and dominant loss-of-function influencing axon survival. Ademi M, Yang X, Coleman MP, Gilley J. Sci Rep 12 13846 (2022)
  39. A phase transition reduces the threshold for nicotinamide mononucleotide-based activation of SARM1, an NAD(P) hydrolase, to physiologically relevant levels. Icso JD, Thompson PR. J Biol Chem 299 105284 (2023)
  40. Adaptation of a Commercial NAD+ Quantification Kit to Assay the Base-Exchange Activity and Substrate Preferences of SARM1. Cirilli I, Amici A, Gilley J, Coleman MP, Orsomando G. Molecules 29 847 (2024)
  41. Loss of Sarm1 reduces retinal ganglion cell loss in chronic glaucoma. Zeng H, Mayberry JE, Wadkins D, Chen N, Summers DW, Kuehn MH. Acta Neuropathol Commun 12 23 (2024)
  42. Lyssavirus M protein degrades neuronal microtubules by reprogramming mitochondrial metabolism. Yuan Y, Fang A, Wang H, Wang C, Sui B, Zhao J, Fu ZF, Zhou M, Zhao L. mBio 15 e0288023 (2024)
  43. Opposing roles of Fos, Raw, and SARM1 in the regulation of axonal degeneration and synaptic structure. Waller TJ, Collins CA. Front Cell Neurosci 17 1283995 (2023)
  44. SARM1 is responsible for calpain-dependent dendrite degeneration in mouse hippocampal neurons. Miyamoto T, Kim C, Chow J, Dugas JC, DeGroot J, Bagdasarian AL, Thottumkara AP, Larhammar M, Calvert ME, Fox BM, Lewcock JW, Kane LA. J Biol Chem 300 105630 (2024)
  45. SARM1 regulates NAD+-linked metabolism and select immune genes in macrophages. Shanahan KA, Davis GM, Doran CG, Sugisawa R, Davey GP, Bowie AG. J Biol Chem 300 105620 (2024)
  46. Structure-function analysis of ceTIR-1/hSARM1 explains the lack of Wallerian axonal degeneration in C. elegans. Khazma T, Grossman A, Guez-Haddad J, Feng C, Dabas H, Sain R, Weitman M, Zalk R, Isupov MN, Hammarlund M, Hons M, Opatowsky Y. Cell Rep 42 113026 (2023)
  47. The structure of NAD+ consuming protein Acinetobacter baumannii TIR domain shows unique kinetics and conformations. Klontz E, Obi JO, Wang Y, Glendening G, Carr J, Tsibouris C, Buddula S, Nallar S, Soares AS, Beckett D, Redzic JS, Eisenmesser E, Palm C, Schmidt K, Scudder AH, Obiorah T, Essuman K, Milbrandt J, Diantonio A, Ray K, Snyder MLD, Deredge D, Snyder GA. J Biol Chem 299 105290 (2023)