7ct5 Citations

Engineered trimeric ACE2 binds viral spike protein and locks it in "Three-up" conformation to potently inhibit SARS-CoV-2 infection.

OpenAccess logo Cell Res 31 98-100 (2021)
Cited: 59 times
EuropePMC logo PMID: 33177651

Reviews - 7ct5 mentioned but not cited (1)

  1. SARS-CoV-2 Virus-Host Interaction: Currently Available Structures and Implications of Variant Emergence on Infectivity and Immune Response. Queirós-Reis L, Gomes da Silva P, Gonçalves J, Brancale A, Bassetto M, Mesquita JR. Int J Mol Sci 22 10836 (2021)

Articles - 7ct5 mentioned but not cited (5)

  1. Structure and Mutations of SARS-CoV-2 Spike Protein: A Focused Overview. Mehra R, Kepp KP. ACS Infect Dis 8 29-58 (2022)
  2. Modelling SARS-CoV-2 spike-protein mutation effects on ACE2 binding. Thakur S, Verma RK, Kepp KP, Mehra R. J Mol Graph Model 119 108379 (2022)
  3. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. O'Donoghue SI, Schafferhans A, Sikta N, Stolte C, Kaur S, Ho BK, Anderson S, Procter JB, Dallago C, Bordin N, Adcock M, Rost B. Mol Syst Biol 17 e10079 (2021)
  4. Structural Basis for the Enhanced Infectivity and Immune Evasion of Omicron Subvariants. Li Y, Shen Y, Zhang Y, Yan R. Viruses 15 1398 (2023)
  5. The SARS-CoV-2 Delta (B.1.617.2) variant with spike N501Y mutation in the shadow of Omicron emergence. Salimović-Bešić I, Dedeić-Ljubović A, Zahirović E, Hasanović M, Šehić M, Vukovikj M, Boshevska G, Vegar-Zubović S, Mehmedika-Suljić E, Izetbegović S. Heliyon 8 e12650 (2022)


Reviews citing this publication (17)

  1. Potential detrimental role of soluble ACE2 in severe COVID-19 comorbid patients. Rahman MM, Hasan M, Ahmed A. Rev Med Virol 31 1-12 (2021)
  2. ACE2-based decoy receptors for SARS coronavirus 2. Jing W, Procko E. Proteins 89 1065-1078 (2021)
  3. Anti-SARS-CoV-1 and -2 nanobody engineering towards avidity-inspired therapeutics. Obeng EM, Dzuvor CKO, Danquah MK. Nano Today 42 101350 (2022)
  4. Multivalent ACE2 engineering-A promising pathway for advanced coronavirus nanomedicine development. Obeng EM, Fianu I, Danquah MK. Nano Today 46 101580 (2022)
  5. SARS-CoV-2 cell entry and targeted antiviral development. Chen Z, Du R, Galvan Achi JM, Rong L, Cui Q. Acta Pharm Sin B 11 3879-3888 (2021)
  6. ACE2, B0AT1, and SARS-CoV-2 spike protein: Structural and functional implications. Zhang Y, Yan R, Zhou Q. Curr Opin Struct Biol 74 102388 (2022)
  7. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Cruz-Teran C, Tiruthani K, McSweeney M, Ma A, Pickles R, Lai SK. Adv Drug Deliv Rev 169 100-117 (2021)
  8. Clinical development of antivirals against SARS-CoV-2 and its variants. Lan Q, Yan Y, Zhang G, Xia S, Zhou J, Lu L, Jiang S. Curr Res Microb Sci 6 100208 (2024)
  9. Engineering ACE2 decoy receptors to combat viral escapability. Arimori T, Ikemura N, Okamoto T, Takagi J, Standley DM, Hoshino A. Trends Pharmacol Sci 43 838-851 (2022)
  10. Foe and friend in the COVID-19-associated acute kidney injury: an insight on intrarenal renin-angiotensin system. Xu C, Chen Y, Yu J. Acta Biochim Biophys Sin (Shanghai) 54 1-11 (2022)
  11. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Oz M, Lorke DE. Biomed Pharmacother 136 111193 (2021)
  12. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. BioDrugs 36 231-323 (2022)
  13. Peptides-based therapeutics: Emerging potential therapeutic agents for COVID-19. Shah JN, Guo GQ, Krishnan A, Ramesh M, Katari NK, Shahbaaz M, Abdellattif MH, Singh SK, Dua K. Therapie 77 319-328 (2022)
  14. Targeting SARS-CoV-2 and host cell receptor interactions. Lim SP. Antiviral Res 210 105514 (2023)
  15. Understanding a protein fold: The physics, chemistry, and biology of α-helical coiled coils. Woolfson DN. J Biol Chem 299 104579 (2023)
  16. Vaccination Strategies Based on Bacterial Self-Assembling Proteins as Antigen Delivery Nanoscaffolds. Lamontagne F, Khatri V, St-Louis P, Bourgault S, Archambault D. Vaccines (Basel) 10 1920 (2022)
  17. Virus Entry Inhibitors: Past, Present, and Future. Su S, Xu W, Jiang S. Adv Exp Med Biol 1366 1-13 (2022)

Articles citing this publication (36)

  1. SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome. Zimmerman MI, Porter JR, Ward MD, Singh S, Vithani N, Meller A, Mallimadugula UL, Kuhn CE, Borowsky JH, Wiewiora RP, Hurley MFD, Harbison AM, Fogarty CA, Coffland JE, Fadda E, Voelz VA, Chodera JD, Bowman GR. Nat Chem 13 651-659 (2021)
  2. SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Zahradník J, Marciano S, Shemesh M, Zoler E, Harari D, Chiaravalli J, Meyer B, Rudich Y, Li C, Marton I, Dym O, Elad N, Lewis MG, Andersen H, Gagne M, Seder RA, Douek DC, Schreiber G. Nat Microbiol 6 1188-1198 (2021)
  3. Glycated ACE2 receptor in diabetes: open door for SARS-COV-2 entry in cardiomyocyte. D'Onofrio N, Scisciola L, Sardu C, Trotta MC, De Feo M, Maiello C, Mascolo P, De Micco F, Turriziani F, Municinò E, Monetti P, Lombardi A, Napolitano MG, Marino FZ, Ronchi A, Grimaldi V, Hermenean A, Rizzo MR, Barbieri M, Franco R, Campobasso CP, Napoli C, Municinò M, Paolisso G, Balestrieri ML, Marfella R. Cardiovasc Diabetol 20 99 (2021)
  4. Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Hunt AC, Case JB, Park YJ, Cao L, Wu K, Walls AC, Liu Z, Bowen JE, Yeh HW, Saini S, Helms L, Zhao YT, Hsiang TY, Starr TN, Goreshnik I, Kozodoy L, Carter L, Ravichandran R, Green LB, Matochko WL, Thomson CA, Vögeli B, Krüger A, VanBlargan LA, Chen RE, Ying B, Bailey AL, Kafai NM, Boyken SE, Ljubetič A, Edman N, Ueda G, Chow CM, Johnson M, Addetia A, Navarro MJ, Panpradist N, Gale M, Freedman BS, Bloom JD, Ruohola-Baker H, Whelan SPJ, Stewart L, Diamond MS, Veesler D, Jewett MC, Baker D. Sci Transl Med 14 eabn1252 (2022)
  5. Engineered ACE2 receptor therapy overcomes mutational escape of SARS-CoV-2. Higuchi Y, Suzuki T, Arimori T, Ikemura N, Mihara E, Kirita Y, Ohgitani E, Mazda O, Motooka D, Nakamura S, Sakai Y, Itoh Y, Sugihara F, Matsuura Y, Matoba S, Okamoto T, Takagi J, Hoshino A. Nat Commun 12 3802 (2021)
  6. Bispecific VH/Fab antibodies targeting neutralizing and non-neutralizing Spike epitopes demonstrate enhanced potency against SARS-CoV-2. Lim SA, Gramespacher JA, Pance K, Rettko NJ, Solomon P, Jin J, Lui I, Elledge SK, Liu J, Bracken CJ, Simmons G, Zhou XX, Leung KK, Wells JA. MAbs 13 1893426 (2021)
  7. Engineering Extracellular Vesicles Enriched with Palmitoylated ACE2 as COVID-19 Therapy. Xie F, Su P, Pan T, Zhou X, Li H, Huang H, Wang A, Wang F, Huang J, Yan H, Zeng L, Zhang L, Zhou F. Adv Mater 33 e2103471 (2021)
  8. A novel cyclic γ-AApeptide-based long-acting pan-coronavirus fusion inhibitor with potential oral bioavailability by targeting two sites in spike protein. Xue S, Wang X, Wang L, Xu W, Xia S, Sun L, Wang S, Shen N, Yang Z, Huang B, Li S, Cao C, Calcul L, Sun X, Lu L, Cai J, Jiang S. Cell Discov 8 88 (2022)
  9. Discovery of Cyclic Peptide Ligands to the SARS-CoV-2 Spike Protein Using mRNA Display. Norman A, Franck C, Christie M, Hawkins PME, Patel K, Ashhurst AS, Aggarwal A, Low JKK, Siddiquee R, Ashley CL, Steain M, Triccas JA, Turville S, Mackay JP, Passioura T, Payne RJ. ACS Cent Sci 7 1001-1008 (2021)
  10. Novel Engineered SARS-CoV-2 HR1 Trimer Exhibits Improved Potency and Broad-Spectrum Activity against SARS-CoV-2 and Its Variants. Bi W, Chen G, Dang B. J Virol 96 e0068122 (2022)
  11. The flexibility of ACE2 in the context of SARS-CoV-2 infection. Barros EP, Casalino L, Gaieb Z, Dommer AC, Wang Y, Fallon L, Raguette L, Belfon K, Simmerling C, Amaro RE. Biophys J (2020)
  12. ACE2-lentiviral transduction enables mouse SARS-CoV-2 infection and mapping of receptor interactions. Rawle DJ, Le TT, Dumenil T, Yan K, Tang B, Nguyen W, Watterson D, Modhiran N, Hobson-Peters J, Bishop C, Suhrbier A. PLoS Pathog 17 e1009723 (2021)
  13. S19W, T27W, and N330Y mutations in ACE2 enhance SARS-CoV-2 S-RBD binding toward both wild-type and antibody-resistant viruses and its molecular basis. Ye F, Lin X, Chen Z, Yang F, Lin S, Yang J, Chen H, Sun H, Wang L, Wen A, Zhang X, Dai Y, Cao Y, Yang J, Shen G, Yang L, Li J, Wang Z, Wang W, Wei X, Lu G. Signal Transduct Target Ther 6 343 (2021)
  14. A So-Far Overlooked Secondary Conformation State in the Binding Mode of SARS-CoV-2 Spike Protein to Human ACE2 and Its Conversion Rate Are Crucial for Estimating Infectivity Efficacy of the Underlying Virus Variant. Sevenich M, van den Heuvel J, Gering I, Mohrlüder J, Willbold D. J Virol 96 e0068522 (2022)
  15. A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent. Xiao T, Lu J, Zhang J, Johnson RI, McKay LGA, Storm N, Lavine CL, Peng H, Cai Y, Rits-Volloch S, Lu S, Quinlan BD, Farzan M, Seaman MS, Griffiths A, Chen B. Nat Struct Mol Biol (2021)
  16. Conformational variability of loops in the SARS-CoV-2 spike protein. Wong SWK, Liu Z. Proteins 90 691-703 (2022)
  17. Protein Scaffold-Based Multimerization of Soluble ACE2 Efficiently Blocks SARS-CoV-2 Infection In Vitro and In Vivo. Kayabolen A, Akcan U, Özturan D, Ulbegi-Polat H, Sahin GN, Pinarbasi-Degirmenci N, Bayraktar C, Soyler G, Sarayloo E, Nurtop E, Ozer B, Guney-Esken G, Barlas T, Yildirim IS, Dogan O, Karahuseyinoglu S, Lack NA, Kaya M, Albayrak C, Can F, Solaroglu I, Bagci-Onder T. Adv Sci (Weinh) 9 e2201294 (2022)
  18. Smart therapies against global pandemics: A potential of short peptides. Apostolopoulos V, Bojarska J, Feehan J, Matsoukas J, Wolf W. Front Pharmacol 13 914467 (2022)
  19. Trimeric receptor-binding domain of SARS-CoV-2 acts as a potent inhibitor of ACE2 receptor-mediated viral entry. Basavarajappa SC, Liu AR, Bruchez A, Li Z, Suzart VG, Liu Z, Chen Y, Xiao TS, Buck M, Ramakrishnan P. iScience 25 104716 (2022)
  20. Urtica dioica Agglutinin: A plant protein candidate for inhibition of SARS-COV-2 receptor-binding domain for control of Covid19 Infection. Sabzian-Molaei F, Nasiri Khalili MA, Sabzian-Molaei M, Shahsavarani H, Fattah Pour A, Molaei Rad A, Hadi A. PLoS One 17 e0268156 (2022)
  21. A Closed-Loop Approach to Fight Coronavirus: Early Detection and Subsequent Treatment. Rong G, Zheng Y, Yang X, Bao K, Xia F, Ren H, Bian S, Li L, Zhu B, Sawan M. Biosensors (Basel) 12 900 (2022)
  22. A high-throughput fully automatic biosensing platform for efficient COVID-19 detection. Rong G, Zheng Y, Li X, Guo M, Su Y, Bian S, Dang B, Chen Y, Zhang Y, Shen L, Jin H, Yan R, Wen L, Zhu P, Sawan M. Biosens Bioelectron 220 114861 (2023)
  23. Biosensor-Enabled Deconvolution of the Avidity-Induced Affinity Enhancement for the SARS-CoV-2 Spike Protein and ACE2 Interaction. Gutgsell AR, Gunnarsson A, Forssén P, Gordon E, Fornstedt T, Geschwindner S. Anal Chem 94 1187-1194 (2022)
  24. Computational insights into the membrane fusion mechanism of SARS-CoV-2 at the cellular level. Wang J, Maschietto F, Guberman-Pfeffer MJ, Reiss K, Allen B, Xiong Y, Lolis E, Batista VS. Comput Struct Biotechnol J 19 5019-5028 (2021)
  25. Copper assisted sequence-specific chemical protein conjugation at a single backbone amide. Guo M, Zhao K, Guo L, Zhou R, He Q, Lu K, Li T, Liu D, Chen J, Tang J, Fu X, Zhou J, Zheng B, Mann SI, Zhang Y, Huang J, Yang B, Zhou T, Lei Y, Dang B. Nat Commun 14 8063 (2023)
  26. Coronavirus Entry Inhibitors. Lan Q, Xia S, Lu L. Adv Exp Med Biol 1366 101-121 (2022)
  27. Design of novel disturbing peptides against ACE2 SARS-CoV-2 spike-binding region by computational approaches. Zareei S, Pourmand S, Amanlou M. Front Pharmacol 13 996005 (2022)
  28. Engineered soluble ACE2 receptor: Responding to change with change. Li G, Qian K, Zhang S, Fu W, Zhao J, Lei C, Hu S. Front Immunol 13 1084331 (2022)
  29. Letter Enhanced trimeric ACE2 exhibits potent prophylactic and therapeutic efficacy against the SARS-CoV-2 Delta and Omicron variants in vivo. Li M, Ye ZW, Tang K, Guo L, Bi W, Zhang Y, Tang YD, Rong G, Sawan M, Yin X, Sun R, Yuan S, Dang B. Cell Res 32 589-592 (2022)
  30. Insights into Binding of Single-Stranded Viral RNA Template to the Replication-Transcription Complex of SARS-CoV-2 for the Priming Reaction from Molecular Dynamics Simulations. Wang J, Shi Y, Reiss K, Allen B, Maschietto F, Lolis E, Konigsberg WH, Lisi GP, Batista VS. Biochemistry 61 424-432 (2022)
  31. MVsim is a toolset for quantifying and designing multivalent interactions. Bruncsics B, Errington WJ, Sarkar CA. Nat Commun 13 5029 (2022)
  32. Modeling studies on the role of vitamins B1 (thiamin), B3 (nicotinamide), B6 (pyridoxamine), and caffeine as potential leads for the drug design against COVID-19. Aghamohammadi M, Sirouspour M, Goncalves AS, França TCC, LaPlante SR, Shahdousti P. J Mol Model 28 380 (2022)
  33. Multivalent IgM scaffold enhances the therapeutic potential of variant-agnostic ACE2 decoys against SARS-CoV-2. Verstraete MM, Heinkel F, Li J, Cao S, Tran A, Halverson EC, Gene R, Stangle E, Silva-Moreno B, Arrafi S, Bavananthasivam J, Fung M, Eji-Lasisi M, Masterman S, Xanthoudakis S, Dixit S, Babcook J, Clavette B, Fogg M, Escobar-Cabrera E. MAbs 15 2212415 (2023)
  34. Polymerized porin as a novel delivery platform for coronavirus vaccine. Yang Z, Hua L, Yang M, Li W, Ren Z, Zheng X, Chen H, Long Q, Bai H, Huang W, Ma Y. J Nanobiotechnology 20 260 (2022)
  35. Protein Engineering in the Design of Protein-Protein Interactions: SARS-CoV-2 Inhibitors as a Test Case. Zahradník J, Schreiber G. Biochemistry 60 3429-3435 (2021)
  36. Urtica dioica agglutinin (UDA) as a potential candidate for inhibition of SARS-CoV-2 Omicron variants: In silico prediction and experimental validation. Sabzian-Molaei F, Hosseini S, Alipour A, Ghaderi H, Fotouhi-Chahouki F, Hadi A, Shahsavarani H. Phytomedicine 111 154648 (2023)