7r5h Citations

Assembly of recombinant tau into filaments identical to those of Alzheimer's disease and chronic traumatic encephalopathy.

Abstract

Many neurodegenerative diseases, including Alzheimer’s disease, the most common form of dementia, are characterised by knotted clumps of a protein called tau. In these diseases, tau misfolds, stacks together and forms abnormal filaments, which have a structured core and fuzzy coat. These sticky, misfolded proteins are thought to be toxic to brain cells, the loss of which ultimately causes problems with how people move, think, feel or behave. Reconstructing the shape of tau filaments using an atomic-level imaging technique called electron cryo-microscopy, or cryo-EM, researchers have found distinct types of tau filaments present in certain diseases. In Alzheimer’s disease, for example, a mixture of paired helical and straight filaments is found. Different tau filaments are seen again in chronic traumatic encephalopathy (CTE), a condition associated with repetitive brain trauma. It remains unclear, however, how tau folds into these distinct shapes and under what conditions it forms certain types of filaments. The role that distinct tau folds play in different diseases is also poorly understood. This is largely because researchers making tau proteins in the lab have yet to replicate the exact structure of tau filaments found in diseased brain tissue. Lövestam et al. describe the conditions for making tau filaments in the lab identical to those isolated from the brains of people who died from Alzheimer’s disease and CTE. Lövestam et al. instructed bacteria to make tau protein, optimised filament assembly conditions, including shaking time and speed, and found that bona fide filaments formed from shortened versions of tau. On cryo-EM imaging, the lab-produced filaments had the same left-handed twist and helical symmetry as filaments characteristic of Alzheimer’s disease. Adding salts, however, changed the shape of tau filaments. In the presence of sodium chloride, otherwise known as kitchen salt, tau formed filaments with a filled cavity at the core, identical to tau filaments observed in CTE. Again, this structure was confirmed on cryo-EM imaging. Being able to make tau filaments identical to those found in human tauopathies will allow scientists to study how these filaments form and elucidate what role they play in disease. Ultimately, a better understanding of tau filament formation could lead to improved diagnostics and treatments for neurodegenerative diseases involving tau.

Reviews - 7r5h mentioned but not cited (1)

  1. Insights into the Structural Conformations of the Tau Protein in Different Aggregation Status. Pinzi L, Bisi N, Sorbi C, Franchini S, Tonali N, Rastelli G. Molecules 28 4544 (2023)


Reviews citing this publication (24)

  1. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Scheres SHW, Ryskeldi-Falcon B, Goedert M. Nature 621 701-710 (2023)
  2. Conformational strains of pathogenic amyloid proteins in neurodegenerative diseases. Li D, Liu C. Nat Rev Neurosci 23 523-534 (2022)
  3. NLRP3 inflammasome in neurodegenerative disease. Anderson FL, Biggs KE, Rankin BE, Havrda MC. Transl Res 252 21-33 (2023)
  4. AlphaFold 2 and NMR Spectroscopy: Partners to Understand Protein Structure, Dynamics and Function. Laurents DV. Front Mol Biosci 9 906437 (2022)
  5. Mechanisms and pathology of protein misfolding and aggregation. Louros N, Schymkowitz J, Rousseau F. Nat Rev Mol Cell Biol 24 912-933 (2023)
  6. Tau and neurodegeneration. Goedert M, Crowther RA, Scheres SHW, Spillantini MG. Cytoskeleton (Hoboken) 81 95-102 (2024)
  7. Can accelerated ageing models inform us on age-related tauopathies? Han ZZ, Fleet A, Larrieu D. Aging Cell 22 e13830 (2023)
  8. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Front Chem 10 886382 (2022)
  9. Populations of Tau Conformers Drive Prion-like Strain Effects in Alzheimer's Disease and Related Dementias. Hromadkova L, Siddiqi MK, Liu H, Safar JG. Cells 11 2997 (2022)
  10. Concomitant protein pathogenesis in Parkinson's disease and perspective mechanisms. Han Y, He Z. Front Aging Neurosci 15 1189809 (2023)
  11. Dityrosine cross-linking and its potential roles in Alzheimer's disease. Maina MB, Al-Hilaly YK, Serpell LC. Front Neurosci 17 1132670 (2023)
  12. It's ok to be outnumbered - sub-stoichiometric modulation of homomeric protein complexes. Dimitrova YN, Gutierrez JA, Huard K. RSC Med Chem 14 22-46 (2023)
  13. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Mol Neurodegener 19 20 (2024)
  14. Novel aspects of the phosphorylation and structure of pathological tau: implications for tauopathy biomarkers. Kimura T, Sato H, Kano M, Tatsumi L, Tomita T. FEBS Open Bio 14 181-193 (2024)
  15. Pick's Disease, Seeding an Answer to the Clinical Diagnosis Conundrum. Tamvaka N, Manne S, Kondru N, Ross OA. Biomedicines 11 1646 (2023)
  16. Protein aggregation and neurodegenerative disease: Structural outlook for the novel therapeutics. Arar S, Haque MA, Kayed R. Proteins (2023)
  17. Biochemical approaches to assess the impact of post-translational modifications on pathogenic tau conformations using recombinant protein. Alhadidy MM, Kanaan NM. Biochem Soc Trans 52 301-318 (2024)
  18. Neurodegenerative Disease Tauopathies. Creekmore BC, Watanabe R, Lee EB. Annu Rev Pathol 19 345-370 (2024)
  19. Chronic Traumatic Encephalopathy as the Course of Alzheimer's Disease. Pszczołowska M, Walczak K, Miśków W, Antosz K, Batko J, Kurpas D, Leszek J. Int J Mol Sci 25 4639 (2024)
  20. Molecular Crowding: The History and Development of a Scientific Paradigm. Alfano C, Fichou Y, Huber K, Weiss M, Spruijt E, Ebbinghaus S, De Luca G, Morando MA, Vetri V, Temussi PA, Pastore A. Chem Rev 124 3186-3219 (2024)
  21. Roles of Nucleic Acids in Protein Folding, Aggregation, and Disease. Litberg TJ, Horowitz S. ACS Chem Biol 19 809-823 (2024)
  22. The Enigma of Tau Protein Aggregation: Mechanistic Insights and Future Challenges. Zheng H, Sun H, Cai Q, Tai HC. Int J Mol Sci 25 4969 (2024)
  23. The structural line between prion and "prion-like": Insights from prion protein and tau. Glynn C, Rodriguez JA, Hyman BT. Curr Opin Neurobiol 86 102857 (2024)
  24. Visualization analysis of exercise intervention on Alzheimer disease based on bibliometrics: Trends, hotspots and topics. Jin Y, Li X, Yuan Q, Huang X, Zhang D. Medicine (Baltimore) 102 e36347 (2023)

Articles citing this publication (56)

  1. Structures of α-synuclein filaments from human brains with Lewy pathology. Yang Y, Shi Y, Schweighauser M, Zhang X, Kotecha A, Murzin AG, Garringer HJ, Cullinane PW, Saito Y, Foroud T, Warner TT, Hasegawa K, Vidal R, Murayama S, Revesz T, Ghetti B, Hasegawa M, Lashley T, Scheres SHW, Goedert M. Nature 610 791-795 (2022)
  2. Cryo-EM structures of prion protein filaments from Gerstmann-Sträussler-Scheinker disease. Hallinan GI, Ozcan KA, Hoq MR, Cracco L, Vago FS, Bharath SR, Li D, Jacobsen M, Doud EH, Mosley AL, Fernandez A, Garringer HJ, Jiang W, Ghetti B, Vidal R. Acta Neuropathol 144 509-520 (2022)
  3. Disease-specific tau filaments assemble via polymorphic intermediates. Lövestam S, Li D, Wagstaff JL, Kotecha A, Kimanius D, McLaughlin SH, Murzin AG, Freund SMV, Goedert M, Scheres SHW. Nature 625 119-125 (2024)
  4. High-throughput cryo-EM structure determination of amyloids. Lövestam S, Scheres SHW. Faraday Discuss 240 243-260 (2022)
  5. Identical tau filaments in subacute sclerosing panencephalitis and chronic traumatic encephalopathy. Qi C, Hasegawa M, Takao M, Sakai M, Sasaki M, Mizutani M, Akagi A, Iwasaki Y, Miyahara H, Yoshida M, Scheres SHW, Goedert M. Acta Neuropathol Commun 11 74 (2023)
  6. Cryo-EM structures of tau filaments from SH-SY5Y cells seeded with brain extracts from cases of Alzheimer's disease and corticobasal degeneration. Tarutani A, Lövestam S, Zhang X, Kotecha A, Robinson AC, Mann DMA, Saito Y, Murayama S, Tomita T, Goedert M, Scheres SHW, Hasegawa M. FEBS Open Bio 13 1394-1404 (2023)
  7. Selective Detection of Misfolded Tau From Postmortem Alzheimer's Disease Brains. Wu L, Wang Z, Lad S, Gilyazova N, Dougharty DT, Marcus M, Henderson F, Ray WK, Siedlak S, Li J, Helm RF, Zhu X, Bloom GS, Wang SJ, Zou WQ, Xu B. Front Aging Neurosci 14 945875 (2022)
  8. Subtle change of fibrillation condition leads to substantial alteration of recombinant Tau fibril structure. Li X, Zhang S, Liu Z, Tao Y, Xia W, Sun Y, Liu C, Le W, Sun B, Li D. iScience 25 105645 (2022)
  9. Tau filaments from amyotrophic lateral sclerosis/parkinsonism-dementia complex adopt the CTE fold. Qi C, Verheijen BM, Kokubo Y, Shi Y, Tetter S, Murzin AG, Nakahara A, Morimoto S, Vermulst M, Sasaki R, Aronica E, Hirokawa Y, Oyanagi K, Kakita A, Ryskeldi-Falcon B, Yoshida M, Hasegawa M, Scheres SHW, Goedert M. Proc Natl Acad Sci U S A 120 e2306767120 (2023)
  10. Network of hotspot interactions cluster tau amyloid folds. Mullapudi V, Vaquer-Alicea J, Bommareddy V, Vega AR, Ryder BD, White CL, Diamond MI, Joachimiak LA. Nat Commun 14 895 (2023)
  11. New SNCA mutation and structures of α-synuclein filaments from juvenile-onset synucleinopathy. Yang Y, Garringer HJ, Shi Y, Lövestam S, Peak-Chew S, Zhang X, Kotecha A, Bacioglu M, Koto A, Takao M, Spillantini MG, Ghetti B, Vidal R, Murzin AG, Scheres SHW, Goedert M. Acta Neuropathol 145 561-572 (2023)
  12. The Cryo-EM structures of two amphibian antimicrobial cross-β amyloid fibrils. Bücker R, Seuring C, Cazey C, Veith K, García-Alai M, Grünewald K, Landau M. Nat Commun 13 4356 (2022)
  13. Chemical Features of Polyanions Modulate Tau Aggregation and Conformational States. Montgomery KM, Carroll EC, Thwin AC, Quddus AY, Hodges P, Southworth DR, Gestwicki JE. J Am Chem Soc (2023)
  14. Cryo-EM structures of tau filaments from the brains of mice transgenic for human mutant P301S Tau. Schweighauser M, Murzin AG, Macdonald J, Lavenir I, Crowther RA, Scheres SHW, Goedert M. Acta Neuropathol Commun 11 160 (2023)
  15. Solid-state NMR of paired helical filaments formed by the core tau fragment tau(297-391). Al-Hilaly YK, Hurt C, Rickard JE, Harrington CR, Storey JMD, Wischik CM, Serpell LC, Siemer AB. Front Neurosci 16 988074 (2022)
  16. Cryomicroscopy in situ: what is the smallest molecule that can be directly identified without labels in a cell? Russo CJ, Dickerson JL, Naydenova K. Faraday Discuss 240 277-302 (2022)
  17. Structural analysis and architectural principles of the bacterial amyloid curli. Sleutel M, Pradhan B, Volkov AN, Remaut H. Nat Commun 14 2822 (2023)
  18. Tau seeds occur before earliest Alzheimer's changes and are prevalent across neurodegenerative diseases. Manca M, Standke HG, Browne DF, Huntley ML, Thomas OR, Orrú CD, Hughson AG, Kim Y, Zhang J, Tatsuoka C, Zhu X, Hiniker A, Coughlin DG, Galasko D, Kraus A. Acta Neuropathol 146 31-50 (2023)
  19. In vitro Tau Aggregation Inducer Molecules Influence the Effects of MAPT Mutations on Aggregation Dynamics. Ingham DJ, Hillyer KM, McGuire MJ, Gamblin TC. Biochemistry 61 1243-1259 (2022)
  20. Cryo-EM structure of ex vivo fibrils associated with extreme AA amyloidosis prevalence in a cat shelter. Schulte T, Chaves-Sanjuan A, Mazzini G, Speranzini V, Lavatelli F, Ferri F, Palizzotto C, Mazza M, Milani P, Nuvolone M, Vogt AC, Vogel M, Palladini G, Merlini G, Bolognesi M, Ferro S, Zini E, Ricagno S. Nat Commun 13 7041 (2022)
  21. Improving the hole picture: towards a consensus on the mechanism of nuclear transport. Cowburn D, Rout M. Biochem Soc Trans 51 871-886 (2023)
  22. Self-Aggregating Tau Fragments Recapitulate Pathologic Phenotypes and Neurotoxicity of Alzheimer's Disease in Mice. Le LTHL, Lee J, Im D, Park S, Hwang KD, Lee JH, Jiang Y, Lee YS, Suh YH, Kim HI, Lee MJ. Adv Sci (Weinh) 10 e2302035 (2023)
  23. A new polymorphism of human amylin fibrils with similar protofilaments and a conserved core. Li D, Zhang X, Wang Y, Zhang H, Song K, Bao K, Zhu P. iScience 25 105705 (2022)
  24. Multiancestry analysis of the HLA locus in Alzheimer's and Parkinson's diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes. Le Guen Y, Luo G, Ambati A, Damotte V, Jansen I, Yu E, Nicolas A, de Rojas I, Peixoto Leal T, Miyashita A, Bellenguez C, Lian MM, Parveen K, Morizono T, Park H, Grenier-Boley B, Naito T, Küçükali F, Talyansky SD, Yogeshwar SM, Sempere V, Satake W, Alvarez V, Arosio B, Belloy ME, Benussi L, Boland A, Borroni B, Bullido MJ, Caffarra P, Clarimon J, Daniele A, Darling D, Debette S, Deleuze JF, Dichgans M, Dufouil C, During E, Düzel E, Galimberti D, Garcia-Ribas G, García-Alberca JM, García-González P, Giedraitis V, Goldhardt O, Graff C, Grünblatt E, Hanon O, Hausner L, Heilmann-Heimbach S, Holstege H, Hort J, Jung YJ, Jürgen D, Kern S, Kuulasmaa T, Lee KH, Lin L, Masullo C, Mecocci P, Mehrabian S, de Mendonça A, Boada M, Mir P, Moebus S, Moreno F, Nacmias B, Nicolas G, Niida S, Nordestgaard BG, Papenberg G, Papma J, Parnetti L, Pasquier F, Pastor P, Peters O, Pijnenburg YAL, Piñol-Ripoll G, Popp J, Porcel LM, Puerta R, Pérez-Tur J, Rainero I, Ramakers I, Real LM, Riedel-Heller S, Rodriguez-Rodriguez E, Ross OA, Royo LJ, Rujescu D, Scarmeas N, Scheltens P, Scherbaum N, Schneider A, Seripa D, Skoog I, Solfrizzi V, Spalletta G, Squassina A, van Swieten J, Sánchez-Valle R, Tan EK, Tegos T, Teunissen C, Thomassen JQ, Tremolizzo L, Vyhnalek M, Verhey F, Waern M, Wiltfang J, Zhang J, EADB, GR@ACE study group, DEGESCO consortium, DemGene, EADI, GERAD, Asian Parkinson’s Disease Genetics consortium, Zetterberg H, Blennow K, He Z, Williams J, Amouyel P, Jessen F, Kehoe PG, Andreassen OA, Van Duin C, Tsolaki M, Sánchez-Juan P, Frikke-Schmidt R, Sleegers K, Toda T, Zettergren A, Ingelsson M, Okada Y, Rossi G, Hiltunen M, Gim J, Ozaki K, Sims R, Foo JN, van der Flier W, Ikeuchi T, Ramirez A, Mata I, Ruiz A, Gan-Or Z, Lambert JC, Greicius MD, Mignot E. Proc Natl Acad Sci U S A 120 e2302720120 (2023)
  25. Fully co-factor-free ClearTau platform produces seeding-competent Tau fibrils for reconstructing pathological Tau aggregates. Limorenko G, Tatli M, Kolla R, Nazarov S, Weil MT, Schöndorf DC, Geist D, Reinhardt P, Ehrnhoefer DE, Stahlberg H, Gasparini L, Lashuel HA. Nat Commun 14 3939 (2023)
  26. Initiation and modulation of Tau protein phase separation by the drug suramin. Prince PR, Hochmair J, Brognaro H, Gevorgyan S, Franck M, Schubert R, Lorenzen K, Yazici S, Mandelkow E, Wegmann S, Betzel C. Sci Rep 13 3963 (2023)
  27. Investigating the Theranostic Potential of Graphene Quantum Dots in Alzheimer's Disease. Walton-Raaby M, Woods R, Kalyaanamoorthy S. Int J Mol Sci 24 9476 (2023)
  28. Local structural preferences in shaping tau amyloid polymorphism. Louros N, Wilkinson M, Tsaka G, Ramakers M, Morelli C, Garcia T, Gallardo R, D'Haeyer S, Goossens V, Audenaert D, Thal DR, Mackenzie IR, Rademakers R, Ranson NA, Radford SE, Rousseau F, Schymkowitz J. Nat Commun 15 1028 (2024)
  29. Location of the cross-β structure in prion fibrils: A search by seeding and electron spin resonance spectroscopy. Chu BK, Tsai RF, Hung CL, Kuo YH, Chen EH, Chiang YW, Chan SI, Chen RP. Protein Sci 31 e4326 (2022)
  30. Mutations in Tau Protein Promote Aggregation by Favoring Extended Conformations. Pounot K, Piersson C, Goring AK, Rosu F, Gabelica V, Weik M, Han S, Fichou Y. JACS Au 4 92-100 (2024)
  31. Reconstitution of the Alzheimer's Disease Tau Core Structure from Recombinant Tau297-391 Yields Variable Quaternary Structures as Seen by Negative Stain and Cryo-EM. Glynn C, Chun JE, Donahue CC, Nadler MJS, Fan Z, Hyman BT. Biochemistry 63 194-201 (2024)
  32. Specific detection of tau seeding activity in Alzheimer's disease using rationally designed biosensor cells. Lathuiliere A, Jo Y, Perbet R, Donahue C, Commins C, Quittot N, Fan Z, Bennett RE, Hyman BT. Mol Neurodegener 18 53 (2023)
  33. Structure of the nonhelical filament of the Alzheimer's disease tau core. Duan P, Dregni AJ, Mammeri NE, Hong M. Proc Natl Acad Sci U S A 120 e2310067120 (2023)
  34. Tau oligomerization on microtubules in health and disease. Ori-McKenney KM, McKenney RJ. Cytoskeleton (Hoboken) 81 35-40 (2024)
  35. A new electrochemical method that mimics phosphorylation of the core tau peptide K18 enables kinetic and structural analysis of intermediates and assembly. Masquelier E, Taxon E, Liang SP, Al Sabeh Y, Sepunaru L, Gordon MJ, Morse DE. J Biol Chem 299 103011 (2023)
  36. Alzheimer proteopathic tau seeds are biochemically a forme fruste of mature paired helical filaments. Kumar M, Quittot N, Dujardin S, Schlaffner CN, Viode A, Wiedmer A, Beerepoot P, Chun JE, Glynn C, Fernandes AR, Donahue C, Steen JA, Hyman BT. Brain 147 637-648 (2024)
  37. Disease-relevant β2-microglobulin variants share a common amyloid fold. Wilkinson M, Gallardo RU, Martinez RM, Guthertz N, So M, Aubrey LD, Radford SE, Ranson NA. Nat Commun 14 1190 (2023)
  38. Hierarchical Assembly of Intrinsically Disordered Short Peptides. Guo J, Rich-New ST, Liu C, Huang Y, Tan W, He H, Yi M, Zhang X, Egelman EH, Wang F, Xu B. Chem 9 2530-2546 (2023)
  39. Saturation mutagenesis of α-synuclein reveals monomer fold that modulates aggregation. Chlebowicz J, Russ W, Chen D, Vega A, Vernino S, White CL, Rizo J, Joachimiak LA, Diamond MI. Sci Adv 9 eadh3457 (2023)
  40. Tau and Amyloid β Protein in Patient-Derived Aqueous Brain Extracts Act Concomitantly to Disrupt Long-Term Potentiation in Vivo. Ondrejcak T, Klyubin I, Hu NW, O'Malley TT, Corbett GT, Winters R, Perkinton MS, Billinton A, Prenderville JA, Walsh DM, Rowan MJ. J Neurosci 43 5870-5879 (2023)
  41. Tau filaments with the chronic traumatic encephalopathy fold in a case of vacuolar tauopathy with VCP mutation D395G. Qi C, Kobayashi R, Kawakatsu S, Kametani F, Scheres SHW, Goedert M, Hasegawa M. Acta Neuropathol 147 86 (2024)
  42. Ultrastructures of α-Synuclein Filaments in Synucleinopathy Brains and Experimental Models. Tarutani A, Hasegawa M. J Mov Disord 17 15-29 (2024)
  43. Amyloid fibril structures of tau: Conformational plasticity of the second microtubule-binding repeat. El Mammeri N, Duan P, Dregni AJ, Hong M. Sci Adv 9 eadh4731 (2023)
  44. Aβ Oligomer Dissociation Is Catalyzed by Fibril Surfaces. Dear AJ, Thacker D, Wennmalm S, Ortigosa-Pascual L, Andrzejewska EA, Meisl G, Linse S, Knowles TPJ. ACS Chem Neurosci 15 2296-2307 (2024)
  45. C9orf72-associated dipeptide protein repeats form A11-positive oligomers in amyotrophic lateral sclerosis and frontotemporal dementia. Bhatt N, Puangmalai N, Sengupta U, Jerez C, Kidd M, Gandhi S, Kayed R. J Biol Chem 300 105628 (2024)
  46. Classification of helical polymers with deep-learning language models. Li D, Jiang W. J Struct Biol 215 108041 (2023)
  47. Disease-Associated Mutations in Tau Encode for Changes in Aggregate Structure Conformation. Sun KT, Patel T, Kang SG, Yarahmady A, Srinivasan M, Julien O, Heras J, Mok SA. ACS Chem Neurosci 14 4282-4297 (2023)
  48. Distinct tau folds initiate templated seeding and alter the post-translational modification profile. Tarutani A, Kametani F, Tahira M, Saito Y, Yoshida M, Robinson AC, Mann DMA, Murayama S, Tomita T, Hasegawa M. Brain 146 4988-4999 (2023)
  49. Evolving prion-like tau conformers differentially alter postsynaptic proteins in neurons inoculated with distinct isolates of Alzheimer's disease tau. Hromadkova L, Kim C, Haldiman T, Peng L, Zhu X, Cohen M, de Silva R, Safar JG. Cell Biosci 13 174 (2023)
  50. Identification of high-performing antibodies for the reliable detection of Tau proteoforms by Western blotting and immunohistochemistry. Ellis MJ, Lekka C, Holden KL, Tulmin H, Seedat F, O'Brien DP, Dhayal S, Zeissler ML, Knudsen JG, Kessler BM, Morgan NG, Todd JA, Richardson SJ, Stefana MI. Acta Neuropathol 147 87 (2024)
  51. Improving cryo-EM grids for amyloid fibrils using interface-active solutions and spectator proteins. Valli D, Ooi SA, Scattolini G, Chaudhary H, Tietze AA, Maj M. Biophys J 123 718-729 (2024)
  52. In pursuit of degenerative brain disease diagnosis: Dementia biomarkers detected by DNA aptamer-attached portable graphene biosensor. Bodily TA, Ramanathan A, Wei S, Karkisaval A, Bhatt N, Jerez C, Haque MA, Ramil A, Heda P, Wang Y, Kumar S, Leite M, Li T, Zhao J, Lal R. Proc Natl Acad Sci U S A 120 e2311565120 (2023)
  53. Milligram-scale assembly and NMR fingerprint of tau fibrils adopting the Alzheimer's disease fold. Duan P, El Mammeri N, Hong M. J Biol Chem 300 107326 (2024)
  54. Multiple Factors Influence the Incubation Period of ALS Prion-like Transmission in SOD1 Transgenic Mice. Ayers JI, Xu G, Lu Q, Dillon K, Fromholt S, Borchelt DR. Viruses 15 1819 (2023)
  55. Shapeshifting tau: from intrinsically disordered to paired-helical filaments. Mengham K, Al-Hilaly Y, Oakley S, Kasbi K, Maina MB, Serpell LC. Essays Biochem 66 1001-1011 (2022)
  56. β-Bracelets: Macrocyclic Cross-β Epitope Mimics Based on a Tau Conformational Strain. Rajewski BH, Makwana KM, Angera IJ, Geremia DK, Zepeda AR, Hallinan GI, Vidal R, Ghetti B, Serrano AL, Del Valle JR. J Am Chem Soc 145 23131-23142 (2023)