1pwv Citations

The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor.

Nat Struct Mol Biol 11 60-6 (2004)
Related entries: 1pwq, 1pwu, 1pww

Cited: 115 times
EuropePMC logo PMID: 14718924

Abstract

Recent events have created an urgent need for new therapeutic strategies to treat anthrax. We have applied a mixture-based peptide library approach to rapidly determine the optimal peptide substrate for the anthrax lethal factor (LF), a metalloproteinase with an important role in the pathogenesis of the disease. Using this approach we have identified peptide analogs that inhibit the enzyme in vitro and that protect cultured macrophages from LF-mediated cytolysis. The crystal structures of LF bound to an optimized peptide substrate and to peptide-based inhibitors provide a rationale for the observed selectivity and may be exploited in the design of future generations of LF inhibitors.

Reviews - 1pwv mentioned but not cited (1)

  1. Unleashing the Power of Bond Cleavage Chemistry in Living Systems. Wang J, Wang X, Fan X, Chen PR. ACS Cent Sci 7 929-943 (2021)

Articles - 1pwv mentioned but not cited (5)

  1. Anthrax toxin lethal factor domain 3 is highly mobile and responsive to ligand binding. Maize KM, Kurbanov EK, De La Mora-Rey T, Geders TW, Hwang DJ, Walters MA, Johnson RL, Amin EA, Finzel BC. Acta Crystallogr D Biol Crystallogr 70 2813-2822 (2014)
  2. Identification of a Substrate-selective Exosite within the Metalloproteinase Anthrax Lethal Factor. Goldberg AB, Cho E, Miller CJ, Lou HJ, Turk BE. J Biol Chem 292 814-825 (2017)
  3. Insights into the anthrax lethal factor-substrate interaction and selectivity using docking and molecular dynamics simulations. Dalkas GA, Papakyriakou A, Vlamis-Gardikas A, Spyroulias GA. Protein Sci 18 1774-1785 (2009)
  4. Molecular determinants of the mechanism and substrate specificity of Clostridium difficile proline-proline endopeptidase-1. Pichlo C, Juetten L, Wojtalla F, Schacherl M, Diaz D, Baumann U. J Biol Chem 294 11525-11535 (2019)
  5. research-article Explainable protein function annotation using local structure embeddings. Derry A, Altman RB. bioRxiv 2023.10.13.562298 (2023)


Reviews citing this publication (34)

  1. Targeting virulence: a new paradigm for antimicrobial therapy. Clatworthy AE, Pierson E, Hung DT. Nat Chem Biol 3 541-548 (2007)
  2. The biology and future prospects of antivirulence therapies. Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ. Nat Rev Microbiol 6 17-27 (2008)
  3. Emerging principles in protease-based drug discovery. Drag M, Salvesen GS. Nat Rev Drug Discov 9 690-701 (2010)
  4. Metal sensor proteins: nature's metalloregulated allosteric switches. Giedroc DP, Arunkumar AI. Dalton Trans 3107-3120 (2007)
  5. The evolving field of biodefence: therapeutic developments and diagnostics. Burnett JC, Henchal EA, Schmaljohn AL, Bavari S. Nat Rev Drug Discov 4 281-297 (2005)
  6. Antitoxins: novel strategies to target agents of bioterrorism. Rainey GJ, Young JA. Nat Rev Microbiol 2 721-726 (2004)
  7. The design of inhibitors for medicinally relevant metalloproteins. Jacobsen FE, Lewis JA, Cohen SM. ChemMedChem 2 152-171 (2007)
  8. Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs. Cuniasse P, Devel L, Makaritis A, Beau F, Georgiadis D, Matziari M, Yiotakis A, Dive V. Biochimie 87 393-402 (2005)
  9. Fighting bacterial infections-future treatment options. Fernebro J. Drug Resist Updat 14 125-139 (2011)
  10. Chemical inhibitors of the type three secretion system: disarming bacterial pathogens. Duncan MC, Linington RG, Auerbuch V. Antimicrob Agents Chemother 56 5433-5441 (2012)
  11. Targeting Metalloenzymes for Therapeutic Intervention. Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Chem Rev 119 1323-1455 (2019)
  12. The anthrax lethal factor and its MAPK kinase-specific metalloprotease activity. Tonello F, Montecucco C. Mol Aspects Med 30 431-438 (2009)
  13. Polypharmacology rescored: protein-ligand interaction profiles for remote binding site similarity assessment. Salentin S, Haupt VJ, Daminelli S, Schroeder M. Prog Biophys Mol Biol 116 174-186 (2014)
  14. NMR-based techniques in the hit identification and optimisation processes. Pellecchia M, Becattini B, Crowell KJ, Fattorusso R, Forino M, Fragai M, Jung D, Mustelin T, Tautz L. Expert Opin Ther Targets 8 597-611 (2004)
  15. Lethal and edema toxins in the pathogenesis of Bacillus anthracis septic shock: implications for therapy. Sherer K, Li Y, Cui X, Eichacker PQ. Am J Respir Crit Care Med 175 211-221 (2007)
  16. Quantitative mass spectrometry for bacterial protein toxins--a sensitive, specific, high-throughput tool for detection and diagnosis. Boyer AE, Gallegos-Candela M, Lins RC, Kuklenyik Z, Woolfitt A, Moura H, Kalb S, Quinn CP, Barr JR. Molecules 16 2391-2413 (2011)
  17. Matrix metalloproteinase 11 (MMP-11; stromelysin-3) and synthetic inhibitors. Matziari M, Dive V, Yiotakis A. Med Res Rev 27 528-552 (2007)
  18. Anthrax vaccines: present status and future prospects. Kaur M, Singh S, Bhatnagar R. Expert Rev Vaccines 12 955-970 (2013)
  19. Novel strategies to combat bacterial virulence. Lynch SV, Wiener-Kronish JP. Curr Opin Crit Care 14 593-599 (2008)
  20. Designing inhibitors of anthrax toxin. Nestorovich EM, Bezrukov SM. Expert Opin Drug Discov 9 299-318 (2014)
  21. Global substrate specificity profiling of post-translational modifying enzymes. Ivry SL, Meyer NO, Winter MB, Bohn MF, Knudsen GM, O'Donoghue AJ, Craik CS. Protein Sci 27 584-594 (2018)
  22. Alternative pre-approved and novel therapies for the treatment of anthrax. Head BM, Rubinstein E, Meyers AF. BMC Infect Dis 16 621 (2016)
  23. Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications. Duriez E, Armengaud J, Fenaille F, Ezan E. J Mass Spectrom 51 183-199 (2016)
  24. New insights into the pathogenesis and treatment of anthrax toxin-induced shock. Li Y, Sherer K, Cui X, Eichacker PQ. Expert Opin Biol Ther 7 843-854 (2007)
  25. Examining sedentary time as a risk factor for cardiometabolic diseases and their markers in South Asian adults: a systematic review. Ahmad S, Shanmugasegaram S, Walker KL, Prince SA. Int J Public Health 62 503-515 (2017)
  26. Chemical biology and bacteria: not simply a matter of life or death. Hung DT, Rubin EJ. Curr Opin Chem Biol 10 321-326 (2006)
  27. Inhibition of Pore-Forming Proteins. Omersa N, Podobnik M, Anderluh G. Toxins (Basel) 11 E545 (2019)
  28. The Buzz about ADP-Ribosylation Toxins from Paenibacillus larvae, the Causative Agent of American Foulbrood in Honey Bees. Ebeling J, Fünfhaus A, Genersch E. Toxins (Basel) 13 151 (2021)
  29. An overview of investigational toxin-directed therapies for the adjunctive management of Bacillus anthracis infection and sepsis. Ohanjanian L, Remy KE, Li Y, Cui X, Eichacker PQ. Expert Opin Investig Drugs 24 851-865 (2015)
  30. Macromolecular structures: Quality assessment and biological interpretation. Salunke DM, Nair DT. IUBMB Life 69 563-571 (2017)
  31. Inhibitors of the Metalloproteinase Anthrax Lethal Factor. Goldberg AB, Turk BE. Curr Top Med Chem 16 2350-2358 (2016)
  32. Statistical analysis, optimization, and prioritization of virtual screening parameters for zinc enzymes including the anthrax toxin lethal factor. Maize KM, Zhang X, Amin EA. Curr Top Med Chem 14 2105-2114 (2014)
  33. Biowarfare Pathogens. Is the Research Flavor Different Than That of Clinically Relevant Pathogens? Lee VJ. Annu Rep Med Chem 39 211-221 (2004)
  34. Research Progress on Small Molecular Inhibitors of the Type 3 Secretion System. Lv C, Li Y, Wei Y, Wang J, Yu H, Gao F, Zhu C, Jia X, Tong M, Dong P, Gao Q, Geng L. Molecules 27 8348 (2022)

Articles citing this publication (75)

  1. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA, Liu S, Sastalla I, Leppla SH, Moayeri M. PLoS Pathog 8 e1002638 (2012)
  2. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. Chavarría-Smith J, Vance RE. PLoS Pathog 9 e1003452 (2013)
  3. Gold nanoparticles-based protease assay. Guarise C, Pasquato L, De Filippis V, Scrimin P. Proc Natl Acad Sci U S A 103 3978-3982 (2006)
  4. Anthrax lethal factor inhibition. Shoop WL, Xiong Y, Wiltsie J, Woods A, Guo J, Pivnichny JV, Felcetto T, Michael BF, Bansal A, Cummings RT, Cunningham BR, Friedlander AM, Douglas CM, Patel SB, Wisniewski D, Scapin G, Salowe SP, Zaller DM, Chapman KT, Scolnick EM, Schmatz DM, Bartizal K, MacCoss M, Hermes JD. Proc Natl Acad Sci U S A 102 7958-7963 (2005)
  5. Human alpha-defensins neutralize anthrax lethal toxin and protect against its fatal consequences. Kim C, Gajendran N, Mittrücker HW, Weiwad M, Song YH, Hurwitz R, Wilmanns M, Fischer G, Kaufmann SH. Proc Natl Acad Sci U S A 102 4830-4835 (2005)
  6. Identification of small molecule inhibitors of anthrax lethal factor. Panchal RG, Hermone AR, Nguyen TL, Wong TY, Schwarzenbacher R, Schmidt J, Lane D, McGrath C, Turk BE, Burnett J, Aman MJ, Little S, Sausville EA, Zaharevitz DW, Cantley LC, Liddington RC, Gussio R, Bavari S. Nat Struct Mol Biol 11 67-72 (2004)
  7. Efficient synthetic inhibitors of anthrax lethal factor. Forino M, Johnson S, Wong TY, Rozanov DV, Savinov AY, Li W, Fattorusso R, Becattini B, Orry AJ, Jung D, Abagyan RA, Smith JW, Alibek K, Liddington RC, Strongin AY, Pellecchia M. Proc Natl Acad Sci U S A 102 9499-9504 (2005)
  8. Structure, properties, and engineering of the major zinc binding site on human albumin. Blindauer CA, Harvey I, Bunyan KE, Stewart AJ, Sleep D, Harrison DJ, Berezenko S, Sadler PJ. J Biol Chem 284 23116-23124 (2009)
  9. Identifying chelators for metalloprotein inhibitors using a fragment-based approach. Jacobsen JA, Fullagar JL, Miller MT, Cohen SM. J Med Chem 54 591-602 (2011)
  10. Retrocyclins kill bacilli and germinating spores of Bacillus anthracis and inactivate anthrax lethal toxin. Wang W, Mulakala C, Ward SC, Jung G, Luong H, Pham D, Waring AJ, Kaznessis Y, Lu W, Bradley KA, Lehrer RI. J Biol Chem 281 32755-32764 (2006)
  11. Structure-based dissection of the active site chemistry of leukotriene A4 hydrolase: implications for M1 aminopeptidases and inhibitor design. Tholander F, Muroya A, Roques BP, Fournié-Zaluski MC, Thunnissen MM, Haeggström JZ. Chem Biol 15 920-929 (2008)
  12. Glycerol monolaurate inhibits the effects of Gram-positive select agents on eukaryotic cells. Peterson ML, Schlievert PM. Biochemistry 45 2387-2397 (2006)
  13. A novel secreted metalloprotease (CD2830) from Clostridium difficile cleaves specific proline sequences in LPXTG cell surface proteins. Hensbergen PJ, Klychnikov OI, Bakker D, van Winden VJ, Ras N, Kemp AC, Cordfunke RA, Dragan I, Deelder AM, Kuijper EJ, Corver J, Drijfhout JW, van Leeuwen HC. Mol Cell Proteomics 13 1231-1244 (2014)
  14. Purified Bacillus anthracis lethal toxin complex formed in vitro and during infection exhibits functional and biological activity. Panchal RG, Halverson KM, Ribot W, Lane D, Kenny T, Abshire TG, Ezzell JW, Hoover TA, Powell B, Little S, Kasianowicz JJ, Bavari S. J Biol Chem 280 10834-10839 (2005)
  15. Dual effect of synthetic aminoglycosides: antibacterial activity against Bacillus anthracis and inhibition of anthrax lethal factor. Fridman M, Belakhov V, Lee LV, Liang FS, Wong CH, Baasov T. Angew Chem Int Ed Engl 44 447-452 (2005)
  16. The discovery of a potent and selective lethal factor inhibitor for adjunct therapy of anthrax infection. Xiong Y, Wiltsie J, Woods A, Guo J, Pivnichny JV, Tang W, Bansal A, Cummings RT, Cunningham BR, Friedlander AM, Douglas CM, Salowe SP, Zaller DM, Scolnick EM, Schmatz DM, Bartizal K, Hermes JD, MacCoss M, Chapman KT. Bioorg Med Chem Lett 16 964-968 (2006)
  17. Effective antiprotease-antibiotic treatment of experimental anthrax. Popov SG, Popova TG, Hopkins S, Weinstein RS, MacAfee R, Fryxell KJ, Chandhoke V, Bailey C, Alibek K. BMC Infect Dis 5 25 (2005)
  18. Crystal structure of the engineered neutralizing antibody M18 complexed to domain 4 of the anthrax protective antigen. Leysath CE, Monzingo AF, Maynard JA, Barnett J, Georgiou G, Iverson BL, Robertus JD. J Mol Biol 387 680-693 (2009)
  19. Thioamide hydroxypyrothiones supersede amide hydroxypyrothiones in potency against anthrax lethal factor. Agrawal A, de Oliveira CA, Cheng Y, Jacobsen JA, McCammon JA, Cohen SM. J Med Chem 52 1063-1074 (2009)
  20. Cross-inhibition between furin and lethal factor inhibitors. Peinado JR, Kacprzak MM, Leppla SH, Lindberg I. Biochem Biophys Res Commun 321 601-605 (2004)
  21. Evaluation and binding-mode prediction of thiopyrone-based inhibitors of anthrax lethal factor. Lewis JA, Mongan J, McCammon JA, Cohen SM. ChemMedChem 1 694-697 (2006)
  22. Identification of novel anthrax lethal factor inhibitors generated by combinatorial Pictet-Spengler reaction followed by screening in situ. Numa MM, Lee LV, Hsu CC, Bower KE, Wong CH. Chembiochem 6 1002-1006 (2005)
  23. Inhibitors of bacterial virulence identified in a surrogate host model. Benghezal M, Adam E, Lucas A, Burn C, Orchard MG, Deuschel C, Valentino E, Braillard S, Paccaud JP, Cosson P. Cell Microbiol 9 1336-1342 (2007)
  24. Protection from anthrax toxin-mediated killing of macrophages by the combined effects of furin inhibitors and chloroquine. Komiyama T, Swanson JA, Fuller RS. Antimicrob Agents Chemother 49 3875-3882 (2005)
  25. Convergent evolution as a mechanism for pathogenic adaptation. Sikora S, Strongin A, Godzik A. Trends Microbiol 13 522-527 (2005)
  26. Metalloproteinase inhibitors, nonantimicrobial chemically modified tetracyclines, and ilomastat block Bacillus anthracis lethal factor activity in viable cells. Kocer SS, Walker SG, Zerler B, Golub LM, Simon SR. Infect Immun 73 7548-7557 (2005)
  27. Active leukocyte detachment and apoptosis/necrosis on PEG hydrogels and the implication in the host inflammatory response. Waldeck H, Wang X, Joyce E, Kao WJ. Biomaterials 33 29-37 (2012)
  28. Development of a cell-based fluorescence resonance energy transfer reporter for Bacillus anthracis lethal factor protease. Kimura RH, Steenblock ER, Camarero JA. Anal Biochem 369 60-70 (2007)
  29. Cationic polyamines inhibit anthrax lethal factor protease. Goldman ME, Cregar L, Nguyen D, Simo O, O'Malley S, Humphreys T. BMC Pharmacol 6 8 (2006)
  30. A semi-synthetic ion channel platform for detection of phosphatase and protease activity. Macrae MX, Blake S, Jiang X, Capone R, Estes DJ, Mayer M, Yang J. ACS Nano 3 3567-3580 (2009)
  31. Mixed-type noncompetitive inhibition of anthrax lethal factor protease by aminoglycosides. Kuzmic P, Cregar L, Millis SZ, Goldman M. FEBS J 273 3054-3062 (2006)
  32. Guanidinylated 2,5-dideoxystreptamine derivatives as anthrax lethal factor inhibitors. Jiao GS, Cregar L, Goldman ME, Millis SZ, Tang C. Bioorg Med Chem Lett 16 1527-1531 (2006)
  33. Identification of novel non-hydroxamate anthrax toxin lethal factor inhibitors by topomeric searching, docking and scoring, and in vitro screening. Chiu TL, Solberg J, Patil S, Geders TW, Zhang X, Rangarajan S, Francis R, Finzel BC, Walters MA, Hook DJ, Amin EA. J Chem Inf Model 49 2726-2734 (2009)
  34. Validated MALDI-TOF-MS method for anthrax lethal factor provides early diagnosis and evaluation of therapeutics. Gallegos-Candela M, Boyer AE, Woolfitt AR, Brumlow J, Lins RC, Quinn CP, Hoffmaster AR, Meister G, Barr JR. Anal Biochem 543 97-107 (2018)
  35. Antidotes to anthrax lethal factor intoxication. Part 2: structural modifications leading to improved in vivo efficacy. Kim S, Jiao GS, Moayeri M, Crown D, Cregar-Hernandez L, McKasson L, Margosiak SA, Leppla SH, Johnson AT. Bioorg Med Chem Lett 21 2030-2033 (2011)
  36. Campylobacter jejuni gene cj0511 encodes a serine peptidase essential for colonisation. Karlyshev AV, Thacker G, Jones MA, Clements MO, Wren BW. FEBS Open Bio 4 468-472 (2014)
  37. A dual-purpose protein ligand for effective therapy and sensitive diagnosis of anthrax. Vuyisich M, Gnanakaran S, Lovchik JA, Lyons CR, Gupta G. Protein J 27 292-302 (2008)
  38. Selectively guanidinylated derivatives of neamine. Syntheses and inhibition of anthrax lethal factor protease. Jiao GS, Simo O, Nagata M, O'Malley S, Hemscheidt T, Cregar L, Millis SZ, Goldman ME, Tang C. Bioorg Med Chem Lett 16 5183-5189 (2006)
  39. Substrate recognition of anthrax lethal factor examined by combinatorial and pre-steady-state kinetic approaches. Zakharova MY, Kuznetsov NA, Dubiley SA, Kozyr AV, Fedorova OS, Chudakov DM, Knorre DG, Shemyakin IG, Gabibov AG, Kolesnikov AV. J Biol Chem 284 17902-17913 (2009)
  40. Identification of exosite-targeting inhibitors of anthrax lethal factor by high-throughput screening. Bannwarth L, Goldberg AB, Chen C, Turk BE. Chem Biol 19 875-882 (2012)
  41. Structural Basis of Proline-Proline Peptide Bond Specificity of the Metalloprotease Zmp1 Implicated in Motility of Clostridium difficile. Schacherl M, Pichlo C, Neundorf I, Baumann U. Structure 23 1632-1642 (2015)
  42. Structure-activity relationship studies of a novel series of anthrax lethal factor inhibitors. Johnson SL, Chen LH, Barile E, Emdadi A, Sabet M, Yuan H, Wei J, Guiney D, Pellecchia M. Bioorg Med Chem 17 3352-3368 (2009)
  43. Inhibition of anthrax lethal factor by ssDNA aptamers. Lahousse M, Park HC, Lee SC, Ha NR, Jung IP, Schlesinger SR, Shackelford K, Yoon MY, Kim SK. Arch Biochem Biophys 646 16-23 (2018)
  44. Subsite specificity of anthrax lethal factor and its implications for inhibitor development. Li F, Terzyan S, Tang J. Biochem Biophys Res Commun 407 400-405 (2011)
  45. Anthrax lethal toxin induces acute diastolic dysfunction in rats through disruption of the phospholamban signaling network. Golden HB, Watson LE, Nizamutdinov D, Feng H, Gerilechaogetu F, Lal H, Verma SK, Mukhopadhyay S, Foster DM, Dillmann WH, Dostal DE. Int J Cardiol 168 3884-3895 (2013)
  46. Development of a comprehensive, validated pharmacophore hypothesis for anthrax toxin lethal factor (LF) inhibitors using genetic algorithms, Pareto scoring, and structural biology. Chiu TL, Amin EA. J Chem Inf Model 52 1886-1897 (2012)
  47. Development of high-throughput assay of lethal factor using native substrate. Kim J, Choi MK, Koo BS, Yoon MY. Anal Biochem 341 33-39 (2005)
  48. Inhibition of anthrax lethal factor: lability of hydroxamate as a chelating group. Li F, Chvyrkova I, Terzyan S, Wakeham N, Turner R, Ghosh AK, Zhang XC, Tang J. Appl Microbiol Biotechnol 94 1041-1049 (2012)
  49. Mechanistic differences between in vitro assays for hydrazone-based small molecule inhibitors of anthrax lethal factor. Hanna ML, Tarasow TM, Perkins J. Bioorg Chem 35 50-58 (2007)
  50. Rational design of p53, an intrinsically unstructured protein, for the fabrication of novel molecular sensors. Geddie ML, O'Loughlin TL, Woods KK, Matsumura I. J Biol Chem 280 35641-35646 (2005)
  51. A novel pharmacophore model for the design of anthrax lethal factor inhibitors. Yuan H, Johnson SL, Chen LH, Wei J, Pellecchia M. Chem Biol Drug Des 76 263-268 (2010)
  52. An anthrax lethal factor mutant that is defective at causing pyroptosis retains proapoptotic activity. Ngai S, Batty S, Liao KC, Mogridge J. FEBS J 277 119-127 (2010)
  53. Alkaline earth metals are not required for the restoration of the apoform of anthrax lethal factor to its holoenzyme state. Säbel CE, St-Denis S, Neureuther JM, Carbone R, Siemann S. Biochem Biophys Res Commun 403 209-213 (2010)
  54. Anthrax lethal factor cleaves regulatory subunits of phosphoinositide-3 kinase to contribute to toxin lethality. Mendenhall MA, Liu S, Portley MK, O'Mard D, Fattah R, Szabo R, Bugge TH, Khillan JS, Leppla SH, Moayeri M. Nat Microbiol 5 1464-1471 (2020)
  55. High metal substitution tolerance of anthrax lethal factor and characterization of its active copper-substituted analogue. Lo SY, Säbel CE, Webb MI, Walsby CJ, Siemann S. J Inorg Biochem 140 12-22 (2014)
  56. Identification of a lead small-molecule inhibitor of anthrax lethal toxin by using fluorescence-based high-throughput screening. Wei D, Bu Z, Yu A, Li F. BMB Rep 44 811-815 (2011)
  57. Proteolytic assay-based screening identifies a potent inhibitor of anthrax lethal factor. Park HC, Sung SR, Lim SM, Lee JS, Kim SK, Yoon MY. Microb Pathog 53 109-112 (2012)
  58. The effects of anthrax lethal factor on the macrophage proteome: potential activity on nitric oxide synthases. Kim J, Park H, Myung-Hyun J, Han SH, Chung H, Lee JS, Park JS, Yoon MY. Arch Biochem Biophys 472 58-64 (2008)
  59. Computational insights into the interaction of the anthrax lethal factor with the N-terminal region of its substrates. Joshi M, Ebalunode JO, Briggs JM. Proteins 75 323-335 (2009)
  60. Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. Saunders MJ, Edwards BS, Zhu J, Sklar LA, Graves SW. Curr Protoc Cytom Chapter 13 Unit 13.12.1-17 (2010)
  61. Ultrasensitive detection of protease activity of anthrax and botulinum toxins by a new PCR-based assay. Kolesnikov AV, Kozyr AV, Ryabko AK, Shemyakin IG. Pathog Dis 74 ftv112 (2016)
  62. Bacillus anthracis lethal toxin represses MMTV promoter activity through transcription factors. Kang Z, Webster Marketon JI, Johnson A, Sternberg EM. J Mol Biol 389 595-605 (2009)
  63. Design and use of a novel substrate for simple, rapid, and specific early detection of anthrax infection. Suryadi K, Shine N. PLoS One 13 e0207084 (2018)
  64. Facile solid-phase synthesis of C-terminal peptide aldehydes and hydroxamates from a common Backbone Amide-Linked (BAL) intermediate. Gazal S, Masterson LR, Barany G. J Pept Res 66 324-332 (2005)
  65. Letter Response to Comment on Three X-ray Crystal Structure Papers. Salunke DM, Khan T, Gaur V, Tapryal S, Kaur K. J Immunol 196 524-528 (2016)
  66. Small molecule inhibitors of anthrax lethal factor toxin. Williams JD, Khan AR, Cardinale SC, Butler MM, Bowlin TL, Peet NP. Bioorg Med Chem 22 419-434 (2014)
  67. Letter Structural evidence of intramolecular propeptide inhibition of the aspzincin metalloendopeptidase AsaP1. Bogdanović X, Palm GJ, Schwenteit J, Singh RK, Gudmundsdóttir BK, Hinrichs W. FEBS Lett 590 3280-3294 (2016)
  68. Yeast-hybrid based high-throughput assay for identification of anthrax lethal factor inhibitors. Kim J, Park HC, Gedi V, Gedi V, Park HY, Roberts AG, Atkins WM, Yoon MY. Biochem Biophys Res Commun 404 517-522 (2011)
  69. Analysis of the Errors in the Electrostatically Embedded Many-Body Expansion of the Energy and the Correlation Energy for Zn and Cd Coordination Complexes with Five and Six Ligands and Use of the Analysis to Develop a Generally Successful Fragmentation Strategy. Kurbanov EK, Leverentz HR, Truhlar DG, Amin EA. J Chem Theory Comput 9 2617-2628 (2013)
  70. Characterization of the NLRP1 inflammasome response in bovine species. Vrentas CE, Boggiatto PM, Olsen SC, Leppla SH, Moayeri M. Innate Immun 26 301-311 (2020)
  71. Defensive strategies of Bacillus anthracis that promote a fatal disease. Mogridge J. Drug Discov Today Dis Mech 4 253-258 (2007)
  72. Substrate specificity of the anthrax lethal factor. Zakharova MY, Dubiley SA, Chudakov DM, Gabibov AG, Shemyakin IG, Kolesnikov AV. Dokl Biochem Biophys 418 14-17 (2008)
  73. Effects of metalloprotease anthrax lethal factor on its peptide-based inhibitor R9LF-1. Kong Q, Song Y, Mu M, Han X, Si C, Li F. Mol Cell Biochem 406 293-299 (2015)
  74. Identification of novel anthrax toxin countermeasures using in silico methods. Chiu TL, Maize KM, Amin EA. Methods Mol Biol 993 177-184 (2013)
  75. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor. Maize KM, Kurbanov EK, Johnson RL, Amin EA, Finzel BC. FEBS Lett 589 3836-3841 (2015)