2deu Citations

Snapshots of tRNA sulphuration via an adenylated intermediate.

Nature 442 419-24 (2006)
Related entries: 2der, 2det

Cited: 86 times
EuropePMC logo PMID: 16871210

Abstract

Uridine at the first anticodon position (U34) of glutamate, lysine and glutamine transfer RNAs is universally modified by thiouridylase into 2-thiouridine (s2U34), which is crucial for precise translation by restricting codon-anticodon wobble during protein synthesis on the ribosome. However, it remains unclear how the enzyme incorporates reactive sulphur into the correct position of the uridine base. Here we present the crystal structures of the MnmA thiouridylase-tRNA complex in three discrete forms, which provide snapshots of the sequential chemical reactions during RNA sulphuration. On enzyme activation, an alpha-helix overhanging the active site is restructured into an idiosyncratic beta-hairpin-containing loop, which packs the flipped-out U34 deeply into the catalytic pocket and triggers the activation of the catalytic cysteine residues. The adenylated RNA intermediate is trapped. Thus, the active closed-conformation of the complex ensures accurate sulphur incorporation into the activated uridine carbon by forming a catalytic chamber to prevent solvent from accessing the catalytic site. The structures of the complex with glutamate tRNA further reveal how MnmA specifically recognizes its three different tRNA substrates. These findings provide the structural basis for a general mechanism whereby an enzyme incorporates a reactive atom at a precise position in a biological molecule.

Reviews - 2deu mentioned but not cited (1)

  1. Diverse Mechanisms of Sulfur Decoration in Bacterial tRNA and Their Cellular Functions. Zheng C, Black KA, Dos Santos PC. Biomolecules 7 E33 (2017)

Articles - 2deu mentioned but not cited (6)

  1. Snapshots of dynamics in synthesizing N(6)-isopentenyladenosine at the tRNA anticodon. Chimnaronk S, Forouhar F, Sakai J, Yao M, Tron CM, Atta M, Fontecave M, Hunt JF, Tanaka I. Biochemistry 48 5057-5065 (2009)
  2. Abbreviated Pathway for Biosynthesis of 2-Thiouridine in Bacillus subtilis. Black KA, Dos Santos PC. J Bacteriol 197 1952-1962 (2015)
  3. Recent Advances in Our Understanding of the Biosynthesis of Sulfur Modifications in tRNAs. Shigi N. Front Microbiol 9 2679 (2018)
  4. Detailed analysis of function divergence in a large and diverse domain superfamily: toward a refined protocol of function classification. Dessailly BH, Redfern OC, Cuff AL, Orengo CA. Structure 18 1522-1535 (2010)
  5. An ancient type of MnmA protein is an iron-sulfur cluster-dependent sulfurtransferase for tRNA anticodons. Shigi N, Horitani M, Miyauchi K, Suzuki T, Kuroki M. RNA 26 240-250 (2020)
  6. Structural, biochemical and functional analyses of tRNA-monooxygenase enzyme MiaE from Pseudomonas putida provide insights into tRNA/MiaE interaction. Carpentier P, Leprêtre C, Basset C, Douki T, Torelli S, Duarte V, Hamdane D, Fontecave M, Atta M. Nucleic Acids Res 48 9918-9930 (2020)


Reviews citing this publication (24)

  1. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Suzuki T, Nagao A, Suzuki T. Annu Rev Genet 45 299-329 (2011)
  2. Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Darwin KH. Nat Rev Microbiol 7 485-491 (2009)
  3. The Importance of Being Modified: The Role of RNA Modifications in Translational Fidelity. Agris PF, Narendran A, Sarachan K, Väre VYP, Eruysal E. Enzymes 41 1-50 (2017)
  4. Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors. Hidese R, Mihara H, Esaki N. Appl Microbiol Biotechnol 91 47-61 (2011)
  5. Biosynthesis and functions of sulfur modifications in tRNA. Shigi N. Front Genet 5 67 (2014)
  6. Discovery and characterization of tRNAIle lysidine synthetase (TilS). Suzuki T, Miyauchi K. FEBS Lett 584 272-277 (2010)
  7. Modification of the wobble uridine in bacterial and mitochondrial tRNAs reading NNA/NNG triplets of 2-codon boxes. Armengod ME, Meseguer S, Villarroya M, Prado S, Moukadiri I, Ruiz-Partida R, Garzón MJ, Navarro-González C, Martínez-Zamora A. RNA Biol 11 1495-1507 (2014)
  8. Structure, dynamics, and function of RNA modification enzymes. Ishitani R, Yokoyama S, Nureki O. Curr Opin Struct Biol 18 330-339 (2008)
  9. Biosynthesis and Chemical Applications of Thioamides. Mahanta N, Szantai-Kis DM, Petersson EJ, Mitchell DA. ACS Chem Biol 14 142-163 (2019)
  10. Biosynthesis of Sulfur-Containing tRNA Modifications: A Comparison of Bacterial, Archaeal, and Eukaryotic Pathways. Čavužić M, Liu Y. Biomolecules 7 E27 (2017)
  11. tRNA modification enzymes GidA and MnmE: potential role in virulence of bacterial pathogens. Shippy DC, Fadl AA. Int J Mol Sci 15 18267-18280 (2014)
  12. Shared Sulfur Mobilization Routes for tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes. Leimkühler S, Bühning M, Beilschmidt L. Biomolecules 7 E5 (2017)
  13. Complexes of tRNA and maturation enzymes: shaping up for translation. Li H. Curr Opin Struct Biol 17 293-301 (2007)
  14. Mini-Review: Ergothioneine and Ovothiol Biosyntheses, an Unprecedented Trans-Sulfur Strategy in Natural Product Biosynthesis. Naowarojna N, Cheng R, Chen L, Quill M, Xu M, Zhao C, Liu P. Biochemistry 57 3309-3325 (2018)
  15. Convergent evolution of AUA decoding in bacteria and archaea. Suzuki T, Numata T. RNA Biol 11 1586-1596 (2014)
  16. The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria. Yokoyama K, Leimkühler S. Biochim Biophys Acta 1853 1335-1349 (2015)
  17. A structural perspective on the PP-loop ATP pyrophosphatase family. Fellner M, Hausinger RP, Hu J. Crit Rev Biochem Mol Biol 53 607-622 (2018)
  18. Biosynthesis and Degradation of Sulfur Modifications in tRNAs. Shigi N. Int J Mol Sci 22 11937 (2021)
  19. The Multifaceted Bacterial Cysteine Desulfurases: From Metabolism to Pathogenesis. Das M, Dewan A, Shee S, Singh A. Antioxidants (Basel) 10 997 (2021)
  20. Mechanism-based strategies for trapping and crystallizing complexes of RNA-modifying enzymes. Guelorget A, Golinelli-Pimpaneau B. Structure 19 282-291 (2011)
  21. Mechanisms of the tRNA wobble cytidine modification essential for AUA codon decoding in prokaryotes. Numata T. Biosci Biotechnol Biochem 79 347-353 (2015)
  22. Sulfur modification in natural RNA and therapeutic oligonucleotides. Zheng YY, Wu Y, Begley TJ, Sheng J. RSC Chem Biol 2 990-1003 (2021)
  23. Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Magistrati M, Gilea AI, Ceccatelli Berti C, Baruffini E, Dallabona C. Int J Mol Sci 24 2178 (2023)
  24. [New progress in crystallization technology of membrane protein and introduction of pharamaceutical innovation value chain]. Inoue T, Adachi H, Murakami S, Takano K, Matsumura H, Mori Y, Fukunishi Y, Nakamura H, Kinoshita T, Nakanishi I, Okuno Y, Minakata S, Shimojo S, Sakata T. Yakugaku Zasshi 128 497-505 (2008)

Articles citing this publication (55)

  1. Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Noma A, Sakaguchi Y, Suzuki T. Nucleic Acids Res 37 1335-1352 (2009)
  2. The conserved Wobble uridine tRNA thiolase Ctu1-Ctu2 is required to maintain genome integrity. Dewez M, Bauer F, Dieu M, Raes M, Vandenhaute J, Hermand D. Proc Natl Acad Sci U S A 105 5459-5464 (2008)
  3. The RNA acetyltransferase driven by ATP hydrolysis synthesizes N4-acetylcytidine of tRNA anticodon. Ikeuchi Y, Kitahara K, Suzuki T. EMBO J 27 2194-2203 (2008)
  4. Effects of tRNA modification on translational accuracy depend on intrinsic codon-anticodon strength. Manickam N, Joshi K, Bhatt MJ, Farabaugh PJ. Nucleic Acids Res 44 1871-1881 (2016)
  5. The Escherichia coli RlmN methyltransferase is a dual-specificity enzyme that modifies both rRNA and tRNA and controls translational accuracy. Benítez-Páez A, Villarroya M, Armengod ME. RNA 18 1783-1795 (2012)
  6. Crystal structure of the radical SAM enzyme catalyzing tricyclic modified base formation in tRNA. Suzuki Y, Noma A, Suzuki T, Senda M, Senda T, Ishitani R, Nureki O. J Mol Biol 372 1204-1214 (2007)
  7. Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase. Nakanishi K, Bonnefond L, Kimura S, Suzuki T, Ishitani R, Nureki O. Nature 461 1144-1148 (2009)
  8. Combination of the loss of cmnm5U34 with the lack of s2U34 modifications of tRNALys, tRNAGlu, and tRNAGln altered mitochondrial biogenesis and respiration. Wang X, Yan Q, Guan MX. J Mol Biol 395 1038-1048 (2010)
  9. Nuclear factors involved in mitochondrial translation cause a subgroup of combined respiratory chain deficiency. Kemp JP, Smith PM, Pyle A, Neeve VC, Tuppen HA, Schara U, Talim B, Topaloglu H, Holinski-Feder E, Abicht A, Czermin B, Lochmüller H, McFarland R, Chinnery PF, Chrzanowska-Lightowlers ZM, Lightowlers RN, Taylor RW, Horvath R. Brain 134 183-195 (2011)
  10. Biosynthesis of 4-thiouridine in tRNA in the methanogenic archaeon Methanococcus maripaludis. Liu Y, Zhu X, Nakamura A, Orlando R, Söll D, Whitman WB. J Biol Chem 287 36683-36692 (2012)
  11. Post-translational modifications in the active site region of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea. Kahnt J, Buchenau B, Mahlert F, Krüger M, Shima S, Thauer RK. FEBS J 274 4913-4921 (2007)
  12. RNA helicase module in an acetyltransferase that modifies a specific tRNA anticodon. Chimnaronk S, Suzuki T, Manita T, Ikeuchi Y, Yao M, Suzuki T, Tanaka I. EMBO J 28 1362-1373 (2009)
  13. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate. Meyer S, Scrima A, Versées W, Wittinghofer A. J Mol Biol 380 532-547 (2008)
  14. A [3Fe-4S] cluster is required for tRNA thiolation in archaea and eukaryotes. Liu Y, Vinyard DJ, Reesbeck ME, Suzuki T, Manakongtreecheep K, Holland PL, Brudvig GW, Söll D. Proc Natl Acad Sci U S A 113 12703-12708 (2016)
  15. Biochemical Evidence for a Nuclear Modifier Allele (A10S) in TRMU (Methylaminomethyl-2-thiouridylate-methyltransferase) Related to Mitochondrial tRNA Modification in the Phenotypic Manifestation of Deafness-associated 12S rRNA Mutation. Meng F, Cang X, Peng Y, Li R, Zhang Z, Li F, Fan Q, Guan AS, Fischel-Ghosian N, Zhao X, Guan MX. J Biol Chem 292 2881-2892 (2017)
  16. Crystal structure of a 4-thiouridine synthetase-RNA complex reveals specificity of tRNA U8 modification. Neumann P, Lakomek K, Naumann PT, Erwin WM, Lauhon CT, Ficner R. Nucleic Acids Res 42 6673-6685 (2014)
  17. Conformational changes in redox pairs of protein structures. Fan SW, George RA, Haworth NL, Feng LL, Liu JY, Wouters MA. Protein Sci 18 1745-1765 (2009)
  18. Nonredox thiolation in tRNA occurring via sulfur activation by a [4Fe-4S] cluster. Arragain S, Bimai O, Legrand P, Caillat S, Ravanat JL, Touati N, Binet L, Atta M, Fontecave M, Golinelli-Pimpaneau B. Proc Natl Acad Sci U S A 114 7355-7360 (2017)
  19. Biochemical and structural characterization of oxygen-sensitive 2-thiouridine synthesis catalyzed by an iron-sulfur protein TtuA. Chen M, Asai SI, Narai S, Nambu S, Omura N, Sakaguchi Y, Suzuki T, Ikeda-Saito M, Watanabe K, Yao M, Shigi N, Tanaka Y. Proc Natl Acad Sci U S A 114 4954-4959 (2017)
  20. Biosynthesis of the antimetabolite 6-thioguanine in Erwinia amylovora plays a key role in fire blight pathogenesis. Coyne S, Chizzali C, Khalil MN, Litomska A, Richter K, Beerhues L, Hertweck C. Angew Chem Int Ed Engl 52 10564-10568 (2013)
  21. Crystallographic and mutational studies on the tRNA thiouridine synthetase TtuA. Nakagawa H, Kuratani M, Goto-Ito S, Ito T, Katsura K, Terada T, Shirouzu M, Sekine S, Shigi N, Yokoyama S. Proteins 81 1232-1244 (2013)
  22. Molecular basis of cobalamin-dependent RNA modification. Dowling DP, Miles ZD, Köhrer C, Maiocco SJ, Elliott SJ, Bandarian V, Drennan CL. Nucleic Acids Res 44 9965-9976 (2016)
  23. Novel tRNA aminoacylation mechanisms. Cathopoulis T, Chuawong P, Hendrickson TL. Mol Biosyst 3 408-418 (2007)
  24. Thiolated tRNAs of Trypanosoma brucei are imported into mitochondria and dethiolated after import. Bruske EI, Sendfeld F, Schneider A. J Biol Chem 284 36491-36499 (2009)
  25. Unassigned codons, nonsense suppression, and anticodon modifications in the evolution of the genetic code. van der Gulik PT, Hoff WD. J Mol Evol 73 59-69 (2011)
  26. Sequence-structure-function analysis of the bifunctional enzyme MnmC that catalyses the last two steps in the biosynthesis of hypermodified nucleoside mnm5s2U in tRNA. Roovers M, Oudjama Y, Kaminska KH, Purta E, Caillet J, Droogmans L, Bujnicki JM. Proteins 71 2076-2085 (2008)
  27. Normal mode analysis based on an elastic network model for biomolecules in the Protein Data Bank, which uses dihedral angles as independent variables. Wako H, Endo S. Comput Biol Chem 44 22-30 (2013)
  28. Correlation between the stability of tRNA tertiary structure and the catalytic efficiency of a tRNA-modifying enzyme, archaeal tRNA-guanine transglycosylase. Nomura Y, Ohno S, Nishikawa K, Yokogawa T. Genes Cells 21 41-52 (2016)
  29. The putative tRNA 2-thiouridine synthetase Ncs6 is an essential sulfur carrier in Methanococcus maripaludis. Liu Y, Long F, Wang L, Söll D, Whitman WB. FEBS Lett 588 873-877 (2014)
  30. Catalytic mechanism of Sep-tRNA:Cys-tRNA synthase: sulfur transfer is mediated by disulfide and persulfide. Liu Y, Dos Santos PC, Zhu X, Orlando R, Dean DR, Söll D, Yuan J. J Biol Chem 287 5426-5433 (2012)
  31. Biogenesis of 2-agmatinylcytidine catalyzed by the dual protein and RNA kinase TiaS. Terasaka N, Kimura S, Osawa T, Numata T, Suzuki T. Nat Struct Mol Biol 18 1268-1274 (2011)
  32. Iron-sulfur biology invades tRNA modification: the case of U34 sulfuration. Zhou J, Lénon M, Ravanat JL, Touati N, Velours C, Podskoczyj K, Leszczynska G, Fontecave M, Barras F, Golinelli-Pimpaneau B. Nucleic Acids Res 49 3997-4007 (2021)
  33. Structural basis of tRNA agmatinylation essential for AUA codon decoding. Osawa T, Kimura S, Terasaka N, Inanaga H, Suzuki T, Numata T. Nat Struct Mol Biol 18 1275-1280 (2011)
  34. Sulphur shuttling across a chaperone during molybdenum cofactor maturation. Arnoux P, Ruppelt C, Oudouhou F, Lavergne J, Siponen MI, Toci R, Mendel RR, Bittner F, Pignol D, Magalon A, Walburger A. Nat Commun 6 6148 (2015)
  35. Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency. Hathazi D, Griffin H, Jennings MJ, Giunta M, Powell C, Pearce SF, Munro B, Wei W, Boczonadi V, Poulton J, Pyle A, Calabrese C, Gomez-Duran A, Schara U, Pitceathly RDS, Hanna MG, Joost K, Cotta A, Paim JF, Navarro MM, Duff J, Mattman A, Chapman K, Servidei S, Della Marina A, Uusimaa J, Roos A, Mootha V, Hirano M, Tulinius M, Giri M, Hoffmann EP, Lochmüller H, DiMauro S, Minczuk M, Chinnery PF, Müller JS, Horvath R. EMBO J 39 e105364 (2020)
  36. Assay of both activities of the bifunctional tRNA-modifying enzyme MnmC reveals a kinetic basis for selective full modification of cmnm5s2U to mnm5s2U. Pearson D, Carell T. Nucleic Acids Res 39 4818-4826 (2011)
  37. Structural basis for hypermodification of the wobble uridine in tRNA by bifunctional enzyme MnmC. Kim J, Almo SC. BMC Struct Biol 13 5 (2013)
  38. Some mathematical refinements concerning error minimization in the genetic code. Buhrman H, van der Gulik PT, Kelk SM, Koolen WM, Stougie L. IEEE/ACM Trans Comput Biol Bioinform 8 1358-1372 (2011)
  39. YrdC exhibits properties expected of a subunit for a tRNA threonylcarbamoyl transferase. Harris KA, Jones V, Bilbille Y, Swairjo MA, Agris PF. RNA 17 1678-1687 (2011)
  40. Identifying the Minimal Enzymes for Unusual Carbon-Sulfur Bond Formation in Thienodolin Biosynthesis. Wang Y, Wang J, Yu S, Wang F, Ma H, Yue C, Liu M, Deng Z, Huang Y, Qu X. Chembiochem 17 799-803 (2016)
  41. Mutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses. Navarro-González C, Moukadiri I, Villarroya M, López-Pascual E, Tuck S, Armengod ME. PLoS Genet 13 e1006921 (2017)
  42. Anticodon Modifications in the tRNA Set of LUCA and the Fundamental Regularity in the Standard Genetic Code. van der Gulik PT, Hoff WD. PLoS One 11 e0158342 (2016)
  43. Decoding mechanism of non-universal genetic codes in Loligo bleekeri mitochondria. Ohira T, Suzuki T, Miyauchi K, Suzuki T, Yokobori SI, Yamagishi A, Watanabe K. J Biol Chem 288 7645-7652 (2013)
  44. The Nitrile-Forming Enzyme 7-Cyano-7-Deazaguanine Synthase from Geobacillus kaustophilus: A Reverse Nitrilase? Winkler M, Dokulil K, Weber H, Pavkov-Keller T, Wilding B. Chembiochem 16 2373-2378 (2015)
  45. Sulfur Availability Impacts Accumulation of the 2-Thiouridine tRNA Modification in Bacillus subtilis. Edwards AM, Black KA, Dos Santos PC. J Bacteriol 204 e0000922 (2022)
  46. Epoxyqueuosine Reductase QueH in the Biosynthetic Pathway to tRNA Queuosine Is a Unique Metalloenzyme. Li Q, Zallot R, MacTavish BS, Montoya A, Payan DJ, Hu Y, Gerlt JA, Angerhofer A, de Crécy-Lagard V, Bruner SD. Biochemistry 60 3152-3161 (2021)
  47. tRNA Modifications as a Readout of S and Fe-S Metabolism. Edwards AM, Addo MA, Dos Santos PC. Methods Mol Biol 2353 137-154 (2021)
  48. Fast alignment and comparison of RNA structures. Wiegels T, Bienert S, Torda AE. Bioinformatics 29 588-596 (2013)
  49. Synthesis of inosine 6-phosphate diesters via phosphitylation of the carbonyl oxygen. Oka N, Morita Y, Itakura Y, Ando K. Chem Commun (Camb) 49 11503-11505 (2013)
  50. News The genetic code: an archaeal path to literacy. Hendrickson TL. Nat Chem Biol 6 248-249 (2010)
  51. Quick and Spontaneous Transformation between [3Fe-4S] and [4Fe-4S] Iron-Sulfur Clusters in the tRNA-Thiolation Enzyme TtuA. Ishizaka M, Chen M, Narai S, Tanaka Y, Ose T, Horitani M, Yao M. Int J Mol Sci 24 833 (2023)
  52. The Plasmodium falciparum apicoplast cysteine desulfurase provides sulfur for both iron-sulfur cluster assembly and tRNA modification. Swift RP, Elahi R, Rajaram K, Liu HB, Prigge ST. Elife 12 e84491 (2023)
  53. The thiolation of uridine 34 in tRNA, which controls protein translation, depends on a [4Fe-4S] cluster in the archaeum Methanococcus maripaludis. Bimai O, Legrand P, Ravanat JL, Touati N, Zhou J, He N, Lénon M, Barras F, Fontecave M, Golinelli-Pimpaneau B. Sci Rep 13 5351 (2023)
  54. TusA Is a Versatile Protein That Links Translation Efficiency to Cell Division in Escherichia coli. Yildiz T, Leimkühler S. J Bacteriol 203 e00659-20 (2021)
  55. Uncovering the Important Genetic Factors for Growth during Cefotaxime-Gentamicin Combination Treatment in blaCTX-M-1 Encoding Escherichia coli. Alobaidallah MSA, García V, De Mets R, Wellner SM, Thomsen LE, Herrero-Fresno A, Olsen JE. Antibiotics (Basel) 12 993 (2023)