3e00 Citations

Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA.

Nature 456 350-6 (2008)
Related entries: 3dzu, 3dzy

Cited: 460 times
EuropePMC logo PMID: 19043829

Abstract

Nuclear receptors are multi-domain transcription factors that bind to DNA elements from which they regulate gene expression. The peroxisome proliferator-activated receptors (PPARs) form heterodimers with the retinoid X receptor (RXR), and PPAR-gamma has been intensively studied as a drug target because of its link to insulin sensitization. Previous structural studies have focused on isolated DNA or ligand-binding segments, with no demonstration of how multiple domains cooperate to modulate receptor properties. Here we present structures of intact PPAR-gamma and RXR-alpha as a heterodimer bound to DNA, ligands and coactivator peptides. PPAR-gamma and RXR-alpha form a non-symmetric complex, allowing the ligand-binding domain (LBD) of PPAR-gamma to contact multiple domains in both proteins. Three interfaces link PPAR-gamma and RXR-alpha, including some that are DNA dependent. The PPAR-gamma LBD cooperates with both DNA-binding domains (DBDs) to enhance response-element binding. The A/B segments are highly dynamic, lacking folded substructures despite their gene-activation properties.

Reviews - 3e00 mentioned but not cited (5)

  1. The retinoid X receptors and their ligands. Dawson MI, Xia Z. Biochim. Biophys. Acta 1821 21-56 (2012)
  2. Allosteric modulators of steroid hormone receptors: structural dynamics and gene regulation. Kumar R, McEwan IJ. Endocr. Rev. 33 271-299 (2012)
  3. Retinoic acid actions through mammalian nuclear receptors. Huang P, Chandra V, Rastinejad F. Chem. Rev. 114 233-254 (2014)
  4. General molecular biology and architecture of nuclear receptors. Pawlak M, Lefebvre P, Staels B. Curr Top Med Chem 12 486-504 (2012)
  5. Fatty Acid Signaling Mechanisms in Neural Cells: Fatty Acid Receptors. Falomir-Lockhart LJ, Cavazzutti GF, Giménez E, Toscani AM. Front Cell Neurosci 13 162 (2019)

Articles - 3e00 mentioned but not cited (32)

  1. Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F. Nature 456 350-356 (2008)
  2. Nuclear receptor full-length architectures: confronting myth and illusion with high resolution. Rastinejad F, Ollendorff V, Polikarpov I. Trends Biochem. Sci. 40 16-24 (2015)
  3. Cross-Talk between PPARs and the Partners of RXR: A Molecular Perspective. Chan LS, Wells RA. PPAR Res 2009 925309 (2009)
  4. Virtual Screening as a Technique for PPAR Modulator Discovery. Lewis SN, Bassaganya-Riera J, Bevan DR. PPAR Res 2010 861238 (2010)
  5. Structure of the homodimeric androgen receptor ligand-binding domain. Nadal M, Prekovic S, Gallastegui N, Helsen C, Abella M, Zielinska K, Gay M, Vilaseca M, Taulès M, Houtsmuller AB, van Royen ME, Claessens F, Fuentes-Prior P, Estébanez-Perpiñá E. Nat Commun 8 14388 (2017)
  6. Network pharmacology of bioactives from Sorghum bicolor with targets related to diabetes mellitus. Oh KK, Adnan M, Cho DH. PLoS One 15 e0240873 (2020)
  7. Peroxisome proliferator-activated receptor α as a novel therapeutic target for schizophrenia. Wada Y, Maekawa M, Ohnishi T, Balan S, Matsuoka S, Iwamoto K, Iwayama Y, Ohba H, Watanabe A, Hisano Y, Nozaki Y, Toyota T, Shimogori T, Itokawa M, Kobayashi T, Yoshikawa T. EBioMedicine 62 103130 (2020)
  8. Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct. Lee K, Goh GY, Wong MA, Klassen TL, Taubert S. PLoS ONE 11 e0162708 (2016)
  9. DNA-binding residues and binding mode prediction with binding-mechanism concerned models. Huang YF, Huang CC, Liu YC, Oyang YJ, Huang CK. BMC Genomics 10 Suppl 3 S23 (2009)
  10. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential. Wang Q, Rosa BA, Jasmer DP, Mitreva M. EBioMedicine 2 1079-1089 (2015)
  11. Potential Mechanism Prediction of Herbal Medicine for Pulmonary Fibrosis Associated with SARS-CoV-2 Infection Based on Network Analysis and Molecular Docking. Jin, An X, Zhang Y, Zhao S, Duan L, Duan Y, Lian F, Tong X. Front Pharmacol 12 602218 (2021)
  12. The quaternary architecture of RARβ-RXRα heterodimer facilitates domain-domain signal transmission. Chandra V, Wu D, Li S, Potluri N, Kim Y, Rastinejad F. Nat Commun 8 868 (2017)
  13. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands. Lewis SN, Garcia Z, Hontecillas R, Bassaganya-Riera J, Bevan DR. J. Comput. Aided Mol. Des. 29 421-439 (2015)
  14. Uncovering Mechanisms of Zanthoxylum piperitum Fruits for the Alleviation of Rheumatoid Arthritis Based on Network Pharmacology. Oh K, Adnan M, Cho D. Biology (Basel) 10 703 (2021)
  15. A Study on the Mechanism of Milkvetch Root in the Treatment of Diabetic Nephropathy Based on Network Pharmacology. Piao C, Zhang Q, Jin, Wang L, Tang C, Zhang N, Lian F, Tong X. Evid Based Complement Alternat Med 2020 6754761 (2020)
  16. A network pharmacology study on main chemical compounds from Hibiscus cannabinus L. leaves. Oh KK, Adnan M, Ju I, Cho DH. RSC Adv 11 11062-11082 (2021)
  17. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  18. A multidisciplinary approach disclosing unexplored Aflatoxin B1 roles in severe impairment of vitamin D mechanisms of action. Persico M, Sessa R, Cesaro E, Dini I, Costanzo P, Ritieni A, Fattorusso C, Grosso M. Cell Biol Toxicol 39 1275-1295 (2023)
  19. Blockage of PPARγ T166 phosphorylation enhances the inducibility of beige adipocytes and improves metabolic dysfunctions. Yang N, Wang Y, Tian Q, Wang Q, Lu Y, Sun L, Wang S, Bei Y, Ji J, Zhou H, Yang W, Yao P, Zhu W, Sun L, Huang Z, Li X, Shen P. Cell Death Differ (2022)
  20. Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARγ. Shang J, Brust R, Mosure SA, Bass J, Munoz-Tello P, Lin H, Hughes TS, Tang M, Ge Q, Kamenekca TM, Kojetin DJ. Elife 7 (2018)
  21. Discovery of Isoquinolinoquinazolinones as a Novel Class of Potent PPARγ Antagonists with Anti-adipogenic Effects. Jin Y, Han Y, Khadka DB, Zhao C, Lee KY, Cho WJ. Sci Rep 6 34661 (2016)
  22. Network Pharmacology Study to Reveal the Potentiality of a Methanol Extract of Caesalpinia sappan L. Wood against Type-2 Diabetes Mellitus. Adnan M, Jeon BB, Chowdhury MHU, Oh KK, Das T, Chy MNU, Cho DH. Life (Basel) 12 277 (2022)
  23. Network Pharmacology and Molecular Docking-Based Strategy to Investigate the Multitarget Mechanisms of Shenqi Yizhi Granule on Alzheimer's Disease. Wang L, Xu X, Wang Z, Chen Q, Wei X, Xue J, Zhang Z, Wang M, Li Y, Zhang J, Wei D. Evid Based Complement Alternat Med 2022 8032036 (2022)
  24. SIRT6 transcriptionally regulates fatty acid transport by suppressing PPARγ. Khan D, Ara T, Ravi V, Rajagopal R, Tandon H, Parvathy J, Gonzalez EA, Asirvatham-Jeyaraj N, Krishna S, Mishra S, Raghu S, Bhati AS, Tamta AK, Dasgupta S, Kolthur-Seetharam U, Etchegaray JP, Mostoslavsky R, Rao PSM, Srinivasan N, Sundaresan NR. Cell Rep 35 109190 (2021)
  25. Airway Epithelial Cell Peroxisome Proliferator-Activated Receptor γ Regulates Inflammation and Mucin Expression in Allergic Airway Disease. Lakshmi SP, Reddy AT, Banno A, Reddy RC. J. Immunol. 201 1775-1783 (2018)
  26. Anti-colon Cancer Effects of Dendrobium officinale Kimura & Migo Revealed by Network Pharmacology Integrated With Molecular Docking and Metabolomics Studies. Tao S, Li J, Wang H, Ding S, Han W, He R, Ren Z, Wei G. Front Med (Lausanne) 9 879986 (2022)
  27. Data Mining, Network Pharmacology, and Molecular Docking Explore the Effects of Core Traditional Chinese Medicine Prescriptions in Patients with Rectal Cancer and Qi and Blood Deficiency Syndrome. Ma S, Zheng L, Zheng L, Bian X. Evid Based Complement Alternat Med 2021 1353674 (2021)
  28. Discovery at the interface: Toward novel anti-proliferative agents targeting human estrogen receptor/S100 interactions. Lee DH, Asare BK, Rajnarayanan RV. Cell Cycle 15 2806-2818 (2016)
  29. Elucidating Drug-Like Compounds and Potential Mechanisms of Corn Silk (Stigma Maydis) against Obesity: A Network Pharmacology Study. Oh KK, Adnan M, Cho DH. Curr Issues Mol Biol 43 1906-1936 (2021)
  30. Identification of Molecular Targets and Potential Mechanisms of Yinchen Wuling San Against Head and Neck Squamous Cell Carcinoma by Network Pharmacology and Molecular Docking. Zhang B, Liu G, Wang X, Hu X. Front Genet 13 914646 (2022)
  31. PPARγ Targets-Derived Diagnostic and Prognostic Index for Papillary Thyroid Cancer. Kim J, Kim SY, Ma SX, Kim SM, Shin SJ, Lee YS, Chang H, Chang HS, Park CS, Lim SB. Cancers (Basel) 13 5110 (2021)
  32. Structural overview and perspectives of the nuclear receptors, a major family as the direct targets for small-molecule drugs. Li F, Song C, Zhang Y, Wu D. Acta Biochim Biophys Sin (Shanghai) 54 12-24 (2022)


Reviews citing this publication (131)

  1. PPARγ signaling and metabolism: the good, the bad and the future. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM. Nat. Med. 19 557-566 (2013)
  2. Nuclear Receptors, RXR, and the Big Bang. Evans RM, Mangelsdorf DJ. Cell 157 255-266 (2014)
  3. PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. Pyper SR, Viswakarma N, Yu S, Reddy JK. Nucl Recept Signal 8 e002 (2010)
  4. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Huang P, Chandra V, Rastinejad F. Annu. Rev. Physiol. 72 247-272 (2010)
  5. Allostery and the Monod-Wyman-Changeux model after 50 years. Changeux JP. Annu Rev Biophys 41 103-133 (2012)
  6. PPARs: fatty acid sensors controlling metabolism. Poulsen Ll, Siersbæk M, Mandrup S. Semin. Cell Dev. Biol. 23 631-639 (2012)
  7. PPARγ and the global map of adipogenesis and beyond. Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S. Trends Endocrinol. Metab. 25 293-302 (2014)
  8. Vitamin A and retinoid signaling: genomic and nongenomic effects. Al Tanoury Z, Piskunov A, Rochette-Egly C. J. Lipid Res. 54 1761-1775 (2013)
  9. Androgen receptor: structure, role in prostate cancer and drug discovery. Tan MH, Li J, Xu HE, Melcher K, Yong EL. Acta Pharmacol. Sin. 36 3-23 (2015)
  10. Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity. Janesick A, Blumberg B. Birth Defects Res. C Embryo Today 93 34-50 (2011)
  11. Mechanisms of transcription factor selectivity. Pan Y, Tsai CJ, Ma B, Ma B, Nussinov R. Trends Genet. 26 75-83 (2010)
  12. Fuzziness: linking regulation to protein dynamics. Fuxreiter M. Mol Biosyst 8 168-177 (2012)
  13. Role of CAR and PXR in xenobiotic sensing and metabolism. Wang YM, Ong SS, Chai SC, Chen T. Expert Opin Drug Metab Toxicol 8 803-817 (2012)
  14. Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Johnson AB, O'Malley BW. Mol. Cell. Endocrinol. 348 430-439 (2012)
  15. The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Choi JM, Bothwell AL. Mol. Cells 33 217-222 (2012)
  16. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. Moseti D, Regassa A, Kim WK. Int J Mol Sci 17 (2016)
  17. Looking at nuclear receptors from a new angle. Helsen C, Claessens F. Mol. Cell. Endocrinol. 382 97-106 (2014)
  18. Peroxisome proliferator-activated receptor gamma (PPAR-γ) and neurodegenerative disorders. Chen YC, Wu JS, Tsai HD, Huang CY, Chen JJ, Sun GY, Lin TN. Mol. Neurobiol. 46 114-124 (2012)
  19. Functional implications of genetic variation in human PPARgamma. Jeninga EH, Gurnell M, Kalkhoven E. Trends Endocrinol. Metab. 20 380-387 (2009)
  20. Anti-apoptotic actions of PPAR-gamma against ischemic stroke. Fong WH, Tsai HD, Chen YC, Wu JS, Lin TN. Mol. Neurobiol. 41 180-186 (2010)
  21. Ecdysteroid hormone action. Spindler KD, Hönl C, Tremmel Ch, Braun S, Ruff H, Spindler-Barth M. Cell. Mol. Life Sci. 66 3837-3850 (2009)
  22. Fuzzy complexes: Specific binding without complete folding. Sharma R, Raduly Z, Miskei M, Fuxreiter M. FEBS Lett. 589 2533-2542 (2015)
  23. Steroid hormone receptors in cancer development: a target for cancer therapeutics. Ahmad N, Kumar R. Cancer Lett. 300 1-9 (2011)
  24. Understanding nuclear receptor form and function using structural biology. Rastinejad F, Huang P, Chandra V, Khorasanizadeh S. J. Mol. Endocrinol. 51 T1-T21 (2013)
  25. Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Changeux JP, Christopoulos A. Cell 166 1084-1102 (2016)
  26. The therapeutic potential of nuclear receptor modulators for treatment of metabolic disorders: PPARγ, RORs, and Rev-erbs. Marciano DP, Chang MR, Corzo CA, Goswami D, Lam VQ, Pascal BD, Griffin PR. Cell Metab. 19 193-208 (2014)
  27. 50th anniversary of the word "allosteric". Changeux JP. Protein Sci. 20 1119-1124 (2011)
  28. Ecdysone receptors: from the Ashburner model to structural biology. Hill RJ, Billas IM, Bonneton F, Graham LD, Lawrence MC. Annu. Rev. Entomol. 58 251-271 (2013)
  29. A conserved surface on the ligand binding domain of nuclear receptors for allosteric control. Buzón V, Carbó LR, Estruch SB, Fletterick RJ, Estébanez-Perpiñá E. Mol. Cell. Endocrinol. 348 394-402 (2012)
  30. Minireview: dynamic structures of nuclear hormone receptors: new promises and challenges. Simons SS, Edwards DP, Kumar R. Mol. Endocrinol. 28 173-182 (2014)
  31. Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy. Hartmann K, Koenen M, Schauer S, Wittig-Blaich S, Ahmad M, Baschant U, Tuckermann JP. Physiol. Rev. 96 409-447 (2016)
  32. Structural and functional analysis of domains of the progesterone receptor. Hill KK, Roemer SC, Churchill ME, Edwards DP. Mol. Cell. Endocrinol. 348 418-429 (2012)
  33. An evolving understanding of nuclear receptor coregulator proteins. Millard CJ, Watson PJ, Fairall L, Schwabe JW. J. Mol. Endocrinol. 51 T23-36 (2013)
  34. Control of nuclear receptor activities in metabolism by post-translational modifications. Berrabah W, Aumercier P, Lefebvre P, Staels B. FEBS Lett. 585 1640-1650 (2011)
  35. Intrinsic disorder in the androgen receptor: identification, characterisation and drugability. McEwan IJ. Mol Biosyst 8 82-90 (2012)
  36. Review of the Structural and Dynamic Mechanisms of PPARγ Partial Agonism. Kroker AJ, Bruning JB. PPAR Res 2015 816856 (2015)
  37. Small molecule modulation of nuclear receptor conformational dynamics: implications for function and drug discovery. Kojetin DJ, Burris TP. Mol. Pharmacol. 83 1-8 (2013)
  38. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Uversky VN. Front Mol Biosci 1 6 (2014)
  39. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Hernandez-Quiles M, Broekema MF, Kalkhoven E. Front Endocrinol (Lausanne) 12 624112 (2021)
  40. Anomalous diffraction in crystallographic phase evaluation. Hendrickson WA. Q. Rev. Biophys. 47 49-93 (2014)
  41. Orphan nuclear receptors in breast cancer pathogenesis and therapeutic response. Riggins RB, Mazzotta MM, Maniya OZ, Clarke R. Endocr. Relat. Cancer 17 R213-31 (2010)
  42. Structural analysis of nuclear receptors: from isolated domains to integral proteins. Brélivet Y, Rochel N, Moras D. Mol. Cell. Endocrinol. 348 466-473 (2012)
  43. The nuclear receptor superfamily of steroid hormones and vitamin D gene regulation. An update. Margolis RN, Christakos S. Ann. N. Y. Acad. Sci. 1192 208-214 (2010)
  44. Revisiting PPARγ as a target for the treatment of metabolic disorders. Choi SS, Park J, Choi JH. BMB Rep 47 599-608 (2014)
  45. Structural and functional insights into nuclear receptor signaling. Jin L, Li Y. Adv. Drug Deliv. Rev. 62 1218-1226 (2010)
  46. Diets involved in PPAR and PI3K/AKT/PTEN pathway may contribute to neuroprotection in a traumatic brain injury. Kitagishi Y, Matsuda S. Alzheimers Res Ther 5 42 (2013)
  47. Structural and functional relationships of the steroid hormone receptors' N-terminal transactivation domain. Kumar R, Litwack G. Steroids 74 877-883 (2009)
  48. The Year in Basic Science: nuclear receptors and coregulators. O'Malley B. Mol Endocrinol 22 2751-2758 (2008)
  49. Xenobiotic-sensing nuclear receptors involved in drug metabolism: a structural perspective. Wallace BD, Redinbo MR. Drug Metab. Rev. 45 79-100 (2013)
  50. Allosteric controls of nuclear receptor function in the regulation of transcription. Billas I, Moras D. J. Mol. Biol. 425 2317-2329 (2013)
  51. Ligands for the Nuclear Peroxisome Proliferator-Activated Receptor Gamma. Sauer S. Trends Pharmacol. Sci. 36 688-704 (2015)
  52. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Corona JC, Duchen MR. Free Radic. Biol. Med. 100 153-163 (2016)
  53. Advances in our structural understanding of orphan nuclear receptors. Gallastegui N, Mackinnon JA, Fletterick RJ, Estébanez-Perpiñá E. Trends Biochem. Sci. 40 25-35 (2015)
  54. Signaling through retinoic acid receptors in cardiac development: Doing the right things at the right times. Xavier-Neto J, Sousa Costa ÂM, Figueira AC, Caiaffa CD, Amaral FN, Peres LM, da Silva BS, Santos LN, Moise AR, Castillo HA. Biochim. Biophys. Acta 1849 94-111 (2015)
  55. Zebrafish as a Model to Study the Role of Peroxisome Proliferating-Activated Receptors in Adipogenesis and Obesity. Den Broeder MJ, Kopylova VA, Kamminga LM, Legler J. PPAR Res 2015 358029 (2015)
  56. PPARs: Protectors or Opponents of Myocardial Function? Pol CJ, Lieu M, Drosatos K. PPAR Res 2015 835985 (2015)
  57. Peroxisomes in cardiomyocytes and the peroxisome / peroxisome proliferator-activated receptor-loop. Colasante C, Chen J, Ahlemeyer B, Baumgart-Vogt E. Thromb. Haemost. 113 452-463 (2015)
  58. Structural considerations of vitamin D signaling. Molnár F. Front Physiol 5 191 (2014)
  59. Historical overview of nuclear receptors. Gustafsson JA. J. Steroid Biochem. Mol. Biol. 157 3-6 (2016)
  60. Unraveling the dynamics of protein interactions with quantitative mass spectrometry. Ramisetty SR, Washburn MP. Crit. Rev. Biochem. Mol. Biol. 46 216-228 (2011)
  61. Retinoic acid receptor modulators: a perspective on recent advances and promises. Alvarez S, Bourguet W, Gronemeyer H, de Lera AR. Expert Opin Ther Pat 21 55-63 (2011)
  62. Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Carazo A, Macáková K, Matoušová K, Krčmová LK, Protti M, Mladěnka P. Nutrients 13 1703 (2021)
  63. DNA-centered approaches to characterize regulatory protein-DNA interaction complexes. Simicevic J, Deplancke B. Mol Biosyst 6 462-468 (2010)
  64. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Davidson MA, Mattison DR, Azoulay L, Krewski D. Crit. Rev. Toxicol. 48 52-108 (2018)
  65. Activation of PPARδ: from computer modelling to biological effects. Kahremany S, Livne A, Gruzman A, Senderowitz H, Sasson S. Br. J. Pharmacol. 172 754-770 (2015)
  66. Nuclear receptors in podocyte biology and glomerular disease. Agrawal S, He JC, Tharaux PL. Nat Rev Nephrol 17 185-204 (2021)
  67. The Role of Lipid Sensing Nuclear Receptors (PPARs and LXR) and Metabolic Lipases in Obesity, Diabetes and NAFLD. Dixon ED, Nardo AD, Claudel T, Trauner M. Genes (Basel) 12 645 (2021)
  68. The concept of allosteric interaction and its consequences for the chemistry of the brain. Changeux JP. J. Biol. Chem. 288 26969-26986 (2013)
  69. Minireview: Conversing with chromatin: the language of nuclear receptors. Biddie SC, John S. Mol. Endocrinol. 28 3-15 (2014)
  70. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Endocr. Rev. 39 760-802 (2018)
  71. Nuclear and extranuclear effects of vitamin A. Iskakova M, Karbyshev M, Piskunov A, Rochette-Egly C. Can. J. Physiol. Pharmacol. 93 1065-1075 (2015)
  72. Nutrigenomics of ω-3 fatty acids: Regulators of the master transcription factors. Rodríguez-Cruz M, Serna DS. Nutrition 41 90-96 (2017)
  73. Thiazolidine-2,4-dione derivatives: programmed chemical weapons for key protein targets of various pathological conditions. Chadha N, Bahia MS, Kaur M, Silakari O. Bioorg. Med. Chem. 23 2953-2974 (2015)
  74. Amorfrutins: A promising class of natural products that are beneficial to health. Sauer S. Chembiochem 15 1231-1238 (2014)
  75. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis. Hyter S, Indra AK. FEBS Lett. 587 529-541 (2013)
  76. Visualizing the Architectures and Interactions of Nuclear Receptors. Khorasanizadeh S, Rastinejad F. Endocrinology 157 4212-4221 (2016)
  77. A novel treatment strategy for glioblastoma multiforme and glioma associated seizures: increasing glutamate uptake with PPARγ agonists. Ching J, Amiridis S, Stylli SS, Morokoff AP, O'Brien TJ, Kaye AH. J Clin Neurosci 22 21-28 (2015)
  78. Advances in drug design with RXR modulators. Vaz B, de Lera ÁR. Expert Opin Drug Discov 7 1003-1016 (2012)
  79. Allosteric mechanisms of nuclear receptors: insights from computational simulations. Mackinnon JA, Gallastegui N, Osguthorpe DJ, Hagler AT, Estébanez-Perpiñá E. Mol. Cell. Endocrinol. 393 75-82 (2014)
  80. Modes-of-Action Related to Repeated Dose Toxicity: Tissue-Specific Biological Roles of PPAR γ Ligand-Dependent Dysregulation in Nonalcoholic Fatty Liver Disease. Al Sharif M, Alov P, Vitcheva V, Pajeva I, Tsakovska I. PPAR Res 2014 432647 (2014)
  81. Nuclear Receptors in the Control of the NLRP3 Inflammasome Pathway. Duez H, Pourcet B. Front Endocrinol (Lausanne) 12 630536 (2021)
  82. Targeting Peroxisome Proliferator-Activated Receptors Using Thiazolidinediones: Strategy for Design of Novel Antidiabetic Drugs. Thangavel N, Al Bratty M, Akhtar Javed S, Ahsan W, Alhazmi HA. Int J Med Chem 2017 1069718 (2017)
  83. Phospholipid regulation of the nuclear receptor superfamily. Crowder MK, Seacrist CD, Blind RD. Adv Biol Regul 63 6-14 (2017)
  84. Resolution of controversies in drug/receptor interactions by protein structure. Limitations and pharmacological solutions. Spedding M. Neuropharmacology 60 3-6 (2011)
  85. Targeting nuclear receptors with marine natural products. Yang C, Li Q, Li Y. Mar Drugs 12 601-635 (2014)
  86. Allosteric modulation as a unifying mechanism for receptor function and regulation. Changeux JP, Christopoulos A. Diabetes Obes Metab 19 Suppl 1 4-21 (2017)
  87. Is the Mouse a Good Model of Human PPARγ-Related Metabolic Diseases? Pap A, Cuaranta-Monroy I, Peloquin M, Nagy L. Int J Mol Sci 17 (2016)
  88. Nuclear receptor crosstalk - defining the mechanisms for therapeutic innovation. De Bosscher K, Desmet SJ, Clarisse D, Estébanez-Perpiña E, Brunsveld L. Nat Rev Endocrinol 16 363-377 (2020)
  89. Structural insights into transcription complexes. Berger I, Blanco AG, Boelens R, Cavarelli J, Coll M, Folkers GE, Nie Y, Pogenberg V, Schultz P, Wilmanns M, Moras D, Poterszman A. J. Struct. Biol. 175 135-146 (2011)
  90. A review of the molecular design and biological activities of RXR agonists. de Almeida NR, Conda-Sheridan M. Med Res Rev 39 1372-1397 (2019)
  91. Allosteric pathways in nuclear receptors - Potential targets for drug design. Fernandez EJ. Pharmacol. Ther. 183 152-159 (2018)
  92. Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Turton KL, Meier-Stephenson V, Badmalia MD, Coffin CS, Patel TR. Viruses 12 (2020)
  93. PPARγ and Diabetes: Beyond the Genome and Towards Personalized Medicine. Cataldi S, Costa V, Ciccodicola A, Aprile M. Curr Diab Rep 21 18 (2021)
  94. The Role of Lipid Metabolism in T Lymphocyte Differentiation and Survival. Howie D, Ten Bokum A, Necula AS, Cobbold SP, Waldmann H. Front Immunol 8 1949 (2017)
  95. The nuclear receptor superfamily: A structural perspective. Weikum ER, Liu X, Ortlund EA. Protein Sci. 27 1876-1892 (2018)
  96. Transcriptional control of energy metabolism by nuclear receptors. Scholtes C, Giguère V. Nat Rev Mol Cell Biol 23 750-770 (2022)
  97. Translational Insights Into Peroxisome Proliferator-Activated Receptors in Experimental Acute Pancreatitis. Huang W, Szatmary P, Wan M, Bharucha S, Awais M, Tang W, Criddle DN, Xia Q, Sutton R. Pancreas 45 167-178 (2016)
  98. Unorthodox Transcriptional Mechanisms of Lipid-Sensing Nuclear Receptors in Macrophages: Are We Opening a New Chapter? Czimmerer Z, Halasz L, Nagy L. Front Endocrinol (Lausanne) 11 609099 (2020)
  99. 4-Hydroxyalkenal-activated PPARδ mediates hormetic interactions in diabetes. Sasson S. Biochimie 136 85-89 (2017)
  100. Advanced Bioinformatics Tools in the Pharmacokinetic Profiles of Natural and Synthetic Compounds with Anti-Diabetic Activity. Udrea AM, Gradisteanu Pircalabioru G, Boboc AA, Mares C, Dinache A, Mernea M, Avram S. Biomolecules 11 1692 (2021)
  101. Competitive Agonists and Antagonists of Steroid Nuclear Receptors: Evolution of the Concept or Its Reversal. Smirnova OV. Biochemistry Mosc. 80 1227-1234 (2015)
  102. Critical Insight into the Design of PPAR-γ Agonists by Virtual Screening Techniques. Thangavel N, Al Bratty M, Javed SA, Ahsan W, Alhazmi HA. Curr Drug Discov Technol 16 82-90 (2019)
  103. Elucidating the Beneficial Role of PPAR Agonists in Cardiac Diseases. Khuchua Z, Glukhov AI, Strauss AW, Javadov S. Int J Mol Sci 19 (2018)
  104. Motif grammar: The basis of the language of gene expression. Nagy G, Nagy L. Comput Struct Biotechnol J 18 2026-2032 (2020)
  105. Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Pluskal T, Weng JK. Chem Soc Rev 47 1592-1637 (2018)
  106. Parsing the Role of PPARs in Macrophage Processes. Toobian D, Ghosh P, Katkar GD. Front Immunol 12 783780 (2021)
  107. Retinoid X Receptor Antagonists. Watanabe M, Kakuta H. Int J Mol Sci 19 (2018)
  108. Strategies to Inhibit Hepatitis B Virus at the Transcript Level. Qu B, Brown RJP. Viruses 13 1327 (2021)
  109. The therapeutic potential of inhibiting PPARγ phosphorylation to treat type 2 diabetes. Frkic RL, Richter K, Bruning JB. J Biol Chem 297 101030 (2021)
  110. Vitamin D and Its Receptor from a Structural Perspective. Rochel N. Nutrients 14 2847 (2022)
  111. Characteristics of Nur77 and its ligands as potential anticancer compounds (Review). Wu L, Chen L. Mol Med Rep 18 4793-4801 (2018)
  112. Contribution of adaptive immunity to human COPD and experimental models of emphysema. Kheradmand F, Zhang Y, Corry DB. Physiol Rev 103 1059-1093 (2023)
  113. Estrogen and Glycemic Homeostasis: The Fundamental Role of Nuclear Estrogen Receptors ESR1/ESR2 in Glucose Transporter GLUT4 Regulation. Gregorio KCR, Laurindo CP, Machado UF. Cells 10 (2021)
  114. Full-length nuclear receptor allosteric regulation. Choi WJ, Haratipour Z, Blind RD. J Lipid Res 64 100406 (2023)
  115. Function and Evolution of Nuclear Receptors in Environmental-Dependent Postembryonic Development. Taubenheim J, Kortmann C, Fraune S. Front Cell Dev Biol 9 653792 (2021)
  116. Impact of PPAR-Alpha Polymorphisms-The Case of Metabolic Disorders and Atherosclerosis. Ruscica M, Busnelli M, Runfola E, Corsini A, Sirtori CR. Int J Mol Sci 20 (2019)
  117. Integrating Thyroid Hormone Signaling in Hypothalamic Control of Metabolism: Crosstalk Between Nuclear Receptors. Kouidhi S, Clerget-Froidevaux MS. Int J Mol Sci 19 (2018)
  118. Mechanisms of action, chemical characteristics, and model systems of obesogens. Griffin MD, Pereira SR, DeBari MK, Abbott RD. BMC Biomed Eng 2 6 (2020)
  119. Microglial polarization in TBI: Signaling pathways and influencing pharmaceuticals. Li YF, Ren X, Zhang L, Wang YH, Chen T. Front Aging Neurosci 14 901117 (2022)
  120. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Dis Model Mech 13 (2020)
  121. Overview of the structure-based non-genomic effects of the nuclear receptor RXRα. Chen L, Wu L, Zhu L, Zhao Y. Cell. Mol. Biol. Lett. 23 36 (2018)
  122. PPAR-γ Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S. Cells 11 3215 (2022)
  123. Peroxisome Proliferator-Activated Receptor-Targeted Therapies: Challenges upon Infectious Diseases. Kim IS, Silwal P, Jo EK. Cells 12 650 (2023)
  124. Peroxisome proliferator-activated receptor agonists and reversal of vascular degeneration through DNA repair, a step toward drug-induced regenerative medicine. Afdal P, Ismail HA, Ashraf M, Hafez N, Nasry N, Hafez N, Youssef N, Samy N, Saeed R, AbdelMassih AF. Cardiovasc Endocrinol Metab 9 128-131 (2020)
  125. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. Lago-Fernandez A, Zarzo-Arias S, Jagerovic N, Morales P. Int J Mol Sci 22 (2021)
  126. Retinoid X Receptor: Cellular and Biochemical Roles of Nuclear Receptor with a Focus on Neuropathological Involvement. Sharma S, Shen T, Chitranshi N, Gupta V, Basavarajappa D, Sarkar S, Mirzaei M, You Y, Krezel W, Graham SL, Gupta V. Mol Neurobiol 59 2027-2050 (2022)
  127. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. Kaupang Å, Hansen TV. PPAR Res 2020 9657380 (2020)
  128. The Role of Chemerin in Metabolic and Cardiovascular Disease: A Literature Review of Its Physiology and Pathology from a Nutritional Perspective. Tan L, Lu X, Danser AHJ, Verdonk K. Nutrients 15 2878 (2023)
  129. The Role of Peroxisome Proliferator-Activated Receptor Gamma and Atherosclerosis: Post-translational Modification and Selective Modulators. Yin L, Wang L, Shi Z, Ji X, Liu L. Front Physiol 13 826811 (2022)
  130. The protein architecture and allosteric landscape of HNF4α. Rastinejad F. Front Endocrinol (Lausanne) 14 1219092 (2023)
  131. Transcription factors in the pathogenesis of pulmonary arterial hypertension-Current knowledge and therapeutic potential. Körbelin J, Klein J, Matuszcak C, Runge J, Harbaum L, Klose H, Hennigs JK. Front Cardiovasc Med 9 1036096 (2022)

Articles citing this publication (292)

  1. DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Zhang J, Chalmers MJ, Stayrook KR, Burris LL, Wang Y, Busby SA, Pascal BD, Garcia-Ordonez RD, Bruning JB, Istrate MA, Kojetin DJ, Dodge JA, Burris TP, Griffin PR. Nat. Struct. Mol. Biol. 18 556-563 (2011)
  2. Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings. Rochel N, Ciesielski F, Godet J, Moman E, Roessle M, Peluso-Iltis C, Moulin M, Haertlein M, Callow P, Mély Y, Svergun DI, Moras D. Nat. Struct. Mol. Biol. 18 564-570 (2011)
  3. Structure of the full human RXR/VDR nuclear receptor heterodimer complex with its DR3 target DNA. Orlov I, Rochel N, Moras D, Klaholz BP. EMBO J. 31 291-300 (2012)
  4. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Christopoulos A, Changeux JP, Catterall WA, Fabbro D, Burris TP, Cidlowski JA, Olsen RW, Peters JA, Neubig RR, Pin JP, Sexton PM, Kenakin TP, Ehlert FJ, Spedding M, Langmead CJ. Pharmacol Rev 66 918-947 (2014)
  5. Conformational selection or induced fit? 50 years of debate resolved. Changeux JP, Edelstein S. F1000 Biol Rep 3 19 (2011)
  6. Multidomain integration in the structure of the HNF-4α nuclear receptor complex. Chandra V, Huang P, Potluri N, Wu D, Kim Y, Rastinejad F. Nature 495 394-398 (2013)
  7. Ligand and receptor dynamics contribute to the mechanism of graded PPARγ agonism. Hughes TS, Chalmers MJ, Novick S, Kuruvilla DS, Chang MR, Kamenecka TM, Rance M, Johnson BA, Burris TP, Griffin PR, Kojetin DJ. Structure 20 139-150 (2012)
  8. The rules of DNA recognition by the androgen receptor. Denayer S, Helsen C, Thorrez L, Haelens A, Claessens F. Mol. Endocrinol. 24 898-913 (2010)
  9. PPARs and lipid ligands in inflammation and metabolism. Harmon GS, Lam MT, Glass CK. Chem. Rev. 111 6321-6340 (2011)
  10. Corecognition of DNA and a methylated histone tail by the MSL3 chromodomain. Kim D, Blus BJ, Chandra V, Huang P, Rastinejad F, Khorasanizadeh S. Nat. Struct. Mol. Biol. 17 1027-1029 (2010)
  11. Genome-wide interrogation of hepatic FXR reveals an asymmetric IR-1 motif and synergy with LRH-1. Chong HK, Infante AM, Seo YK, Jeon TI, Zhang Y, Edwards PA, Xie X, Osborne TF. Nucleic Acids Res. 38 6007-6017 (2010)
  12. Genomewide analyses define different modes of transcriptional regulation by peroxisome proliferator-activated receptor-β/δ (PPARβ/δ). Adhikary T, Kaddatz K, Finkernagel F, Schönbauer A, Meissner W, Scharfe M, Jarek M, Blöcker H, Müller-Brüsselbach S, Müller R. PLoS One 6 e16344 (2011)
  13. The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites. Waku T, Shiraki T, Oyama T, Maebara K, Nakamori R, Morikawa K. EMBO J. 29 3395-3407 (2010)
  14. Genetic Variation Determines PPARγ Function and Anti-diabetic Drug Response In Vivo. Soccio RE, Chen ER, Rajapurkar SR, Safabakhsh P, Marinis JM, Dispirito JR, Emmett MJ, Briggs ER, Fang B, Everett LJ, Lim HW, Won KJ, Steger DJ, Wu Y, Civelek M, Voight BF, Lazar MA. Cell 162 33-44 (2015)
  15. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL, Martínez L, Souza PC, Saidemberg D, Deng T, Amato AA, Togashi M, Hsueh WA, Phillips K, Palma MS, Neves FA, Skaf MS, Webb P, Polikarpov I. PLoS ONE 7 e36297 (2012)
  16. An alternate binding site for PPARγ ligands. Hughes TS, Giri PK, de Vera IM, Marciano DP, Kuruvilla DS, Shin Y, Blayo AL, Kamenecka TM, Burris TP, Griffin PR, Kojetin DJ. Nat Commun 5 3571 (2014)
  17. Sox9-regulated miRNA-574-3p inhibits chondrogenic differentiation of mesenchymal stem cells. Guérit D, Philipot D, Chuchana P, Toupet K, Brondello JM, Mathieu M, Jorgensen C, Noël D. PLoS ONE 8 e62582 (2013)
  18. Hydrogen/deuterium exchange reveals distinct agonist/partial agonist receptor dynamics within vitamin D receptor/retinoid X receptor heterodimer. Zhang J, Chalmers MJ, Stayrook KR, Burris LL, Garcia-Ordonez RD, Pascal BD, Burris TP, Dodge JA, Griffin PR. Structure 18 1332-1341 (2010)
  19. Prospective functional classification of all possible missense variants in PPARG. Majithia AR, Tsuda B, Agostini M, Gnanapradeepan K, Rice R, Peloso G, Patel KA, Zhang X, Broekema MF, Patterson N, Duby M, Sharpe T, Kalkhoven E, Rosen ED, Barroso I, Ellard S, UK Monogenic Diabetes Consortium, Kathiresan S, Myocardial Infarction Genetics Consortium, O'Rahilly S, UK Congenital Lipodystrophy Consortium, Chatterjee K, Florez JC, Mikkelsen T, Savage DB, Altshuler D. Nat. Genet. 48 1570-1575 (2016)
  20. Identification of a binding motif specific to HNF4 by comparative analysis of multiple nuclear receptors. Fang B, Mane-Padros D, Bolotin E, Jiang T, Sladek FM. Nucleic Acids Res. 40 5343-5356 (2012)
  21. The dynamic structure of the estrogen receptor. Kumar R, Zakharov MN, Khan SH, Miki R, Jang H, Toraldo G, Singh R, Bhasin S, Jasuja R. J Amino Acids 2011 812540 (2011)
  22. Structure of a biologically active estrogen receptor-coactivator complex on DNA. Yi P, Wang Z, Feng Q, Pintilie GD, Foulds CE, Lanz RB, Ludtke SJ, Schmid MF, Chiu W, O'Malley BW. Mol. Cell 57 1047-1058 (2015)
  23. GQ-16, a novel peroxisome proliferator-activated receptor γ (PPARγ) ligand, promotes insulin sensitization without weight gain. Amato AA, Rajagopalan S, Lin JZ, Carvalho BM, Figueira AC, Lu J, Ayers SD, Mottin M, Silveira RL, Souza PC, Mourão RH, Saad MJ, Togashi M, Simeoni LA, Abdalla DS, Skaf MS, Polikparpov I, Lima MC, Galdino SL, Brennan RG, Baxter JD, Pitta IR, Webb P, Phillips KJ, Neves FA. J. Biol. Chem. 287 28169-28179 (2012)
  24. The antiparasitic drug ivermectin is a novel FXR ligand that regulates metabolism. Jin L, Feng X, Rong H, Pan Z, Inaba Y, Qiu L, Zheng W, Lin S, Wang R, Wang Z, Wang S, Liu H, Li S, Xie W, Li Y. Nat Commun 4 1937 (2013)
  25. Structure of the retinoid X receptor α-liver X receptor β (RXRα-LXRβ) heterodimer on DNA. Lou X, Toresson G, Benod C, Suh JH, Philips KJ, Webb P, Gustafsson JA. Nat. Struct. Mol. Biol. 21 277-281 (2014)
  26. Coactivators in PPAR-Regulated Gene Expression. Viswakarma N, Jia Y, Bai L, Vluggens A, Borensztajn J, Xu J, Reddy JK. PPAR Res 2010 (2010)
  27. Crystal structure of ArgP from Mycobacterium tuberculosis confirms two distinct conformations of full-length LysR transcriptional regulators and reveals its function in DNA binding and transcriptional regulation. Zhou X, Lou Z, Fu S, Yang A, Shen H, Li Z, Feng Y, Bartlam M, Wang H, Rao Z. J. Mol. Biol. 396 1012-1024 (2010)
  28. Structural mechanism for signal transduction in RXR nuclear receptor heterodimers. Kojetin DJ, Matta-Camacho E, Hughes TS, Srinivasan S, Nwachukwu JC, Cavett V, Nowak J, Chalmers MJ, Marciano DP, Kamenecka TM, Shulman AI, Rance M, Griffin PR, Bruning JB, Nettles KW. Nat Commun 6 8013 (2015)
  29. A naturally occurring insertion of a single amino acid rewires transcriptional regulation by glucocorticoid receptor isoforms. Thomas-Chollier M, Watson LC, Cooper SB, Pufall MA, Liu JS, Borzym K, Vingron M, Yamamoto KR, Meijsing SH. Proc. Natl. Acad. Sci. U.S.A. 110 17826-17831 (2013)
  30. A 629RKLKK633 motif in the hinge region controls the androgen receptor at multiple levels. Tanner TM, Denayer S, Geverts B, Van Tilborgh N, Kerkhofs S, Helsen C, Spans L, Dubois V, Houtsmuller AB, Claessens F, Haelens A. Cell. Mol. Life Sci. 67 1919-1927 (2010)
  31. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity. Kim DH, Xiao Z, Kwon S, Sun X, Ryerson D, Tkac D, Ma P, Wu SY, Chiang CM, Zhou E, Xu HE, Palvimo JJ, Chen LF, Kemper B, Kemper JK. EMBO J. 34 184-199 (2015)
  32. A novel non-agonist peroxisome proliferator-activated receptor γ (PPARγ) ligand UHC1 blocks PPARγ phosphorylation by cyclin-dependent kinase 5 (CDK5) and improves insulin sensitivity. Choi SS, Kim ES, Koh M, Lee SJ, Lim D, Yang YR, Jang HJ, Seo KA, Min SH, Lee IH, Park SB, Suh PG, Choi JH. J. Biol. Chem. 289 26618-26629 (2014)
  33. Agonist and antagonist switch DNA motifs recognized by human androgen receptor in prostate cancer. Chen Z, Lan X, Thomas-Ahner JM, Wu D, Liu X, Ye Z, Wang L, Sunkel B, Grenade C, Chen J, Zynger DL, Yan PS, Huang J, Nephew KP, Huang TH, Lin S, Clinton SK, Li W, Jin VX, Wang Q. EMBO J. 34 502-516 (2015)
  34. Evidence for DNA-binding domain--ligand-binding domain communications in the androgen receptor. Helsen C, Dubois V, Verfaillie A, Young J, Trekels M, Vancraenenbroeck R, De Maeyer M, Claessens F. Mol. Cell. Biol. 32 3033-3043 (2012)
  35. Structural basis of coactivation of liver receptor homolog-1 by β-catenin. Yumoto F, Nguyen P, Sablin EP, Baxter JD, Webb P, Fletterick RJ. Proc. Natl. Acad. Sci. U.S.A. 109 143-148 (2012)
  36. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1. Blind RD, Sablin EP, Kuchenbecker KM, Chiu HJ, Deacon AM, Das D, Fletterick RJ, Ingraham HA. Proc. Natl. Acad. Sci. U.S.A. 111 15054-15059 (2014)
  37. Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Kucera N, Schmalen I, Hennig S, Öllinger R, Strauss HM, Grudziecki A, Wieczorek C, Kramer A, Wolf E. Proc. Natl. Acad. Sci. U.S.A. 109 3311-3316 (2012)
  38. Ligand-binding dynamics rewire cellular signaling via estrogen receptor-α. Srinivasan S, Nwachukwu JC, Parent AA, Cavett V, Nowak J, Hughes TS, Kojetin DJ, Katzenellenbogen JA, Nettles KW. Nat. Chem. Biol. 9 326-332 (2013)
  39. O-GlcNAc modification of PPARγ reduces its transcriptional activity. Ji S, Park SY, Roth J, Kim HS, Cho JW. Biochem. Biophys. Res. Commun. 417 1158-1163 (2012)
  40. Peroxisome degradation in mammals: mechanisms of action, recent advances, and perspectives. Nordgren M, Wang B, Apanasets O, Fransen M. Front Physiol 4 145 (2013)
  41. How do transcription factors select specific binding sites in the genome? Pan Y, Tsai CJ, Ma B, Nussinov R. Nat. Struct. Mol. Biol. 16 1118-1120 (2009)
  42. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures. Oyama T, Toyota K, Waku T, Hirakawa Y, Nagasawa N, Kasuga JI, Hashimoto Y, Miyachi H, Morikawa K. Acta Crystallogr D Biol Crystallogr 65 786-795 (2009)
  43. Regulation of the human endogenous retroviral Syncytin-1 and cell-cell fusion by the nuclear hormone receptors PPARγ/RXRα in placentogenesis. Ruebner M, Langbein M, Strissel PL, Henke C, Schmidt D, Goecke TW, Faschingbauer F, Schild RL, Beckmann MW, Strick R. J. Cell. Biochem. 113 2383-2396 (2012)
  44. S-nitrosoglutathione reductase-dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis. Cao Y, Gomes SA, Rangel EB, Paulino EC, Fonseca TL, Li J, Teixeira MB, Gouveia CH, Bianco AC, Kapiloff MS, Balkan W, Hare JM. J. Clin. Invest. 125 1679-1691 (2015)
  45. A progesterone receptor co-activator (JDP2) mediates activity through interaction with residues in the carboxyl-terminal extension of the DNA binding domain. Hill KK, Roemer SC, Jones DN, Churchill ME, Edwards DP. J. Biol. Chem. 284 24415-24424 (2009)
  46. SOXE transcription factors form selective dimers on non-compact DNA motifs through multifaceted interactions between dimerization and high-mobility group domains. Huang YH, Jankowski A, Cheah KS, Prabhakar S, Jauch R. Sci Rep 5 10398 (2015)
  47. Atomic structure of mutant PPARgamma LBD complexed with 15d-PGJ2: novel modulation mechanism of PPARgamma/RXRalpha function by covalently bound ligands. Waku T, Shiraki T, Oyama T, Morikawa K. FEBS Lett. 583 320-324 (2009)
  48. Chemical proteomics-based analysis of off-target binding profiles for rosiglitazone and pioglitazone: clues for assessing potential for cardiotoxicity. Hoffmann BR, El-Mansy MF, Sem DS, Greene AS. J. Med. Chem. 55 8260-8271 (2012)
  49. Discovering protein-DNA binding sequence patterns using association rule mining. Leung KS, Wong KC, Chan TM, Wong MH, Lee KH, Lau CK, Tsui SK. Nucleic Acids Res. 38 6324-6337 (2010)
  50. Direct interdomain interactions can mediate allosterism in the thyroid receptor. Putcha BD, Fernandez EJ. J. Biol. Chem. 284 22517-22524 (2009)
  51. 25-Hydroxycholesterol-3-sulfate attenuates inflammatory response via PPARγ signaling in human THP-1 macrophages. Xu L, Shen S, Ma Y, Kim JK, Rodriguez-Agudo D, Heuman DM, Hylemon PB, Pandak WM, Ren S. Am. J. Physiol. Endocrinol. Metab. 302 E788-99 (2012)
  52. Binding of the N-terminal region of coactivator TIF2 to the intrinsically disordered AF1 domain of the glucocorticoid receptor is accompanied by conformational reorganizations. Khan SH, Awasthi S, Guo C, Goswami D, Ling J, Griffin PR, Simons SS, Kumar R. J. Biol. Chem. 287 44546-44560 (2012)
  53. DNA-mediated cooperativity facilitates the co-selection of cryptic enhancer sequences by SOX2 and PAX6 transcription factors. Narasimhan K, Pillay S, Huang YH, Jayabal S, Udayasuryan B, Veerapandian V, Kolatkar P, Cojocaru V, Pervushin K, Jauch R. Nucleic Acids Res. 43 1513-1528 (2015)
  54. Peroxisome Proliferator-Activated Receptor Expression in Murine Models and Humans with Age-related Macular Degeneration. Herzlich AA, Ding X, Shen D, Ross RJ, Tuo J, Chan CC. Open Biol J 2 141-148 (2009)
  55. Thrap3 docks on phosphoserine 273 of PPARγ and controls diabetic gene programming. Choi JH, Choi SS, Kim ES, Jedrychowski MP, Yang YR, Jang HJ, Suh PG, Banks AS, Gygi SP, Spiegelman BM. Genes Dev. 28 2361-2369 (2014)
  56. Androgen induces a switch from cytoplasmic retention to nuclear import of the androgen receptor. Ni L, Llewellyn R, Kesler CT, Kelley JB, Spencer A, Snow CJ, Shank L, Paschal BM. Mol. Cell. Biol. 33 4766-4778 (2013)
  57. The transcriptome of fracture healing defines mechanisms of coordination of skeletal and vascular development during endochondral bone formation. Grimes R, Jepsen KJ, Fitch JL, Einhorn TA, Gerstenfeld LC. J. Bone Miner. Res. 26 2597-2609 (2011)
  58. Cross-enhancement of ANGPTL4 transcription by HIF1 alpha and PPAR beta/delta is the result of the conformational proximity of two response elements. Inoue T, Kohro T, Tanaka T, Kanki Y, Li G, Poh HM, Mimura I, Kobayashi M, Taguchi A, Maejima T, Suehiro J, Sugiyama A, Kaneki K, Aruga H, Dong S, Stevens JF, Yamamoto S, Tsutsumi S, Fujita T, Ruan X, Aburatani H, Nangaku M, Ruan Y, Kodama T, Wada Y. Genome Biol. 15 R63 (2014)
  59. Expansion of time window for mass spectrometric measurement of amide hydrogen/deuterium exchange reactions. Coales SJ, E SY, Lee JE, Ma A, Morrow JA, Hamuro Y. Rapid Commun. Mass Spectrom. 24 3585-3592 (2010)
  60. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Guida F, Luongo L, Boccella S, Giordano ME, Romano R, Bellini G, Manzo I, Furiano A, Rizzo A, Imperatore R, Iannotti FA, D'Aniello E, Piscitelli F, Sca Rossi F, Cristino L, Di Marzo V, de Novellis V, Maione S. Sci Rep 7 375 (2017)
  61. Structural and functional analysis of the human nuclear xenobiotic receptor PXR in complex with RXRα. Wallace BD, Betts L, Talmage G, Pollet RM, Holman NS, Redinbo MR. J. Mol. Biol. 425 2561-2577 (2013)
  62. Differential requirements of Hsp90 and DNA for the formation of estrogen receptor homodimers and heterodimers. Powell E, Wang Y, Shapiro DJ, Xu W. J. Biol. Chem. 285 16125-16134 (2010)
  63. Human intestinal epithelial cells express interleukin-10 through Toll-like receptor 4-mediated epithelial-macrophage crosstalk. Hyun J, Romero L, Riveron R, Flores C, Kanagavelu S, Chung KD, Alonso A, Sotolongo J, Ruiz J, Manukyan A, Chun S, Singh G, Salas P, Targan SR, Fukata M. J Innate Immun 7 87-101 (2015)
  64. Endothelium as a gatekeeper of fatty acid transport. Mehrotra D, Wu J, Papangeli I, Chun HJ. Trends Endocrinol. Metab. 25 99-106 (2014)
  65. Ligand unbinding from the estrogen receptor: a computational study of pathways and ligand specificity. Burendahl S, Danciulescu C, Nilsson L. Proteins 77 842-856 (2009)
  66. PKA phosphorylation redirects ERα to promoters of a unique gene set to induce tamoxifen resistance. de Leeuw R, Flach K, Bentin Toaldo C, Alexi X, Canisius S, Neefjes J, Michalides R, Zwart W. Oncogene 32 3543-3551 (2013)
  67. The heterodimeric ecdysteroid receptor complex in the brown shrimp Crangon crangon: EcR and RXR isoform characteristics and sensitivity towards the marine pollutant tributyltin. Verhaegen Y, Parmentier K, Swevers L, Renders E, Rougé P, De Coen W, Cooreman K, Smagghe G. Gen. Comp. Endocrinol. 172 158-169 (2011)
  68. A novel PPARγ2 modulator sLZIP controls the balance between adipogenesis and osteogenesis during mesenchymal stem cell differentiation. Kim J, Ko J. Cell Death Differ. 21 1642-1655 (2014)
  69. Dietary α-eleostearic acid ameliorates experimental inflammatory bowel disease in mice by activating peroxisome proliferator-activated receptor-γ. Lewis SN, Brannan L, Guri AJ, Lu P, Hontecillas R, Bassaganya-Riera J, Bevan DR. PLoS ONE 6 e24031 (2011)
  70. Differential expression and function of alternative splicing variants of human liver X receptor α. Endo-Umeda K, Uno S, Fujimori K, Naito Y, Saito K, Yamagishi K, Jeong Y, Miyachi H, Tokiwa H, Yamada S, Makishima M. Mol Pharmacol 81 800-810 (2012)
  71. Editor's Highlight: Collaborative Cross Mouse Population Enables Refinements to Characterization of the Variability in Toxicokinetics of Trichloroethylene and Provides Genetic Evidence for the Role of PPAR Pathway in Its Oxidative Metabolism. Venkatratnam A, Furuya S, Kosyk O, Gold A, Bodnar W, Konganti K, Threadgill DW, Gillespie KM, Aylor DL, Wright FA, Chiu WA, Rusyn I. Toxicol. Sci. 158 48-62 (2017)
  72. Influence of domain interactions on conformational mobility of the progesterone receptor detected by hydrogen/deuterium exchange mass spectrometry. Goswami D, Callaway C, Pascal BD, Kumar R, Edwards DP, Griffin PR. Structure 22 961-973 (2014)
  73. Regulation of the structurally dynamic N-terminal domain of progesterone receptor by protein-induced folding. Kumar R, Moure CM, Khan SH, Callaway C, Grimm SL, Goswami D, Griffin PR, Edwards DP. J. Biol. Chem. 288 30285-30299 (2013)
  74. C3 halogen and c8'' substituents on stilbene arotinoids modulate retinoic Acid receptor subtype function. Alvarez S, Khanwalkar H, Alvarez R, Erb C, Martínez C, Rodríguez-Barrios F, Germain P, Gronemeyer H, de Lera AR. ChemMedChem 4 1630-1640 (2009)
  75. Dynamic correlation networks in human peroxisome proliferator-activated receptor-γ nuclear receptor protein. Fidelak J, Ferrer S, Oberlin M, Moras D, Dejaegere A, Stote RH. Eur Biophys J 39 1503-1512 (2010)
  76. Hormone binding and co-regulator binding to the glucocorticoid receptor are allosterically coupled. Pfaff SJ, Fletterick RJ. J. Biol. Chem. 285 15256-15267 (2010)
  77. Structure of a thyroid hormone receptor DNA-binding domain homodimer bound to an inverted palindrome DNA response element. Chen Y, Young MA. Mol. Endocrinol. 24 1650-1664 (2010)
  78. The palindromic DNA-bound USP/EcR nuclear receptor adopts an asymmetric organization with allosteric domain positioning. Maletta M, Orlov I, Roblin P, Beck Y, Moras D, Billas IM, Klaholz BP. Nat Commun 5 4139 (2014)
  79. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex. Ricci CG, Silveira RL, Rivalta I, Batista VS, Skaf MS. Sci Rep 6 19940 (2016)
  80. Cooperative activation of gene expression by agonists and antagonists mediated by estrogen receptor heteroligand dimer complexes. Liu S, Han SJ, Smith CL. Mol. Pharmacol. 83 1066-1077 (2013)
  81. Peroxisome Proliferator Activated Receptor-α Association With Silent Information Regulator 1 Suppresses Cardiac Fatty Acid Metabolism in the Failing Heart. Oka S, Zhai P, Yamamoto T, Ikeda Y, Byun J, Hsu CP, Sadoshima J. Circ Heart Fail 8 1123-1132 (2015)
  82. Solution Structures of PPARγ2/RXRα Complexes. Osz J, Pethoukhov MV, Sirigu S, Svergun DI, Moras D, Rochel N. PPAR Res 2012 701412 (2012)
  83. Structure, energetics, and dynamics of binding coactivator peptide to the human retinoid X receptor α ligand binding domain complex with 9-cis-retinoic acid. Xia G, Boerma LJ, Cox BD, Qiu C, Kang S, Smith CD, Renfrow MB, Muccio DD. Biochemistry 50 93-105 (2011)
  84. Thyroid hormone receptor mutations in cancer and resistance to thyroid hormone: perspective and prognosis. Rosen MD, Privalsky ML. J Thyroid Res 2011 361304 (2011)
  85. Towards Coleoptera-specific high-throughput screening systems for compounds with ecdysone activity: development of EcR reporter assays using weevil (Anthonomus grandis)-derived cell lines and in silico analysis of ligand binding to A. grandis EcR ligand-binding pocket. Soin T, Iga M, Swevers L, Rougé P, Janssen CR, Smagghe G. Insect Biochem. Mol. Biol. 39 523-534 (2009)
  86. β-Catenin and peroxisome proliferator-activated receptor-δ coordinate dynamic chromatin loops for the transcription of vascular endothelial growth factor A gene in colon cancer cells. Hwang I, Kim J, Jeong S. J. Biol. Chem. 287 41364-41373 (2012)
  87. Activation of PPARγ suppresses proliferation and induces apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway. Wu K, Yang Y, Liu D, Qi Y, Zhang C, Zhao J, Zhao S. Oncotarget 7 44572-44582 (2016)
  88. Glycolytic enzymes PGK1 and PKM2 as novel transcriptional targets of PPARγ in breast cancer pathophysiology. Shashni B, Sakharkar KR, Nagasaki Y, Sakharkar MK. J Drug Target 21 161-174 (2013)
  89. Ligand binding reduces SUMOylation of the peroxisome proliferator-activated receptor γ (PPARγ) activation function 1 (AF1) domain. Diezko R, Suske G. PLoS ONE 8 e66947 (2013)
  90. Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pastorianus activate peroxisome proliferator-activated receptors. Murakami I, Wakasa Y, Yamashita S, Kurihara T, Zama K, Kobayashi N, Mizutani Y, Mitsutake S, Shigyo T, Igarashi Y. Lipids Health Dis 10 150 (2011)
  91. Potent anti-diabetic effects of MHY908, a newly synthesized PPAR α/γ dual agonist in db/db mice. Park MH, Park JY, Lee HJ, Kim DH, Park D, Jeong HO, Park CH, Chun P, Moon HR, Chung HY. PLoS ONE 8 e78815 (2013)
  92. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models. Isakova A, Berset Y, Hatzimanikatis V, Deplancke B. J. Biol. Chem. 291 10293-10306 (2016)
  93. The p160 coactivator PAS-B motif stabilizes nuclear receptor binding and contributes to isoform-specific regulation by thyroid hormone receptors. Privalsky ML, Lee S, Hahm JB, Young BM, Fong RN, Chan IH. J. Biol. Chem. 284 19554-19563 (2009)
  94. Beta-arrestin-1 protein represses adipogenesis and inflammatory responses through its interaction with peroxisome proliferator-activated receptor-gamma (PPARgamma). Zhuang LN, Hu WX, Xin SM, Zhao J, Pei G. J. Biol. Chem. 286 28403-28413 (2011)
  95. DNA affects ligand binding of the ecdysone receptor of Drosophila melanogaster. Azoitei A, Spindler-Barth M. Mol. Cell. Endocrinol. 303 91-99 (2009)
  96. DNA-binding properties of Drosophila ecdysone receptor isoforms and their modification by the heterodimerization partner ultraspiracle. Braun S, Azoitei A, Spindler-Barth M. Arch. Insect Biochem. Physiol. 72 172-191 (2009)
  97. Identification of the antibiotic ionomycin as an unexpected peroxisome proliferator-activated receptor γ (PPARγ) ligand with a unique binding mode and effective glucose-lowering activity in a mouse model of diabetes. Zheng W, Feng X, Qiu L, Pan Z, Wang R, Lin S, Hou D, Jin L, Li Y. Diabetologia 56 401-411 (2013)
  98. Influence of flanking sequences on signaling between the activation function AF1 and DNA-binding domain of the glucocorticoid receptor. Kumar R, Thompson EB. Arch. Biochem. Biophys. 496 140-145 (2010)
  99. Molecular Mechanisms and Genome-Wide Aspects of PPAR Subtype Specific Transactivation. Bugge A, Mandrup S. PPAR Res 2010 12608-12618 (2010)
  100. Molecular mechanism of allosteric communication in the human PPARalpha-RXRalpha heterodimer. Venäläinen T, Molnár F, Oostenbrink C, Carlberg C, Peräkylä M. Proteins 78 873-887 (2010)
  101. PPARG: Gene Expression Regulation and Next-Generation Sequencing for Unsolved Issues. Costa V, Gallo MA, Letizia F, Aprile M, Casamassimi A, Ciccodicola A. PPAR Res 2010 28-34 (2010)
  102. Role of Peroxisome Proliferator-Activated Receptor α in Diabetic Nephropathy. Chung S, Park CW. Diabetes Metab J 35 327-336 (2011)
  103. SR2067 Reveals a Unique Kinetic and Structural Signature for PPARγ Partial Agonism. van Marrewijk LM, Polyak SW, Hijnen M, Kuruvilla D, Chang MR, Shin Y, Kamenecka TM, Griffin PR, Bruning JB. ACS Chem. Biol. 11 273-283 (2016)
  104. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex. Seok SH, Lee W, Jiang L, Molugu K, Zheng A, Li Y, Park S, Bradfield CA, Xing Y. Proc. Natl. Acad. Sci. U.S.A. 114 5431-5436 (2017)
  105. Design, synthesis, and biological evaluation of novel thiazolidinediones as PPARγ/FFAR1 dual agonists. Darwish KM, Salama I, Mostafa S, Gomaa MS, Helal MA. Eur J Med Chem 109 157-172 (2016)
  106. ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor. Mounir Z, Korn JM, Westerling T, Lin F, Kirby CA, Schirle M, McAllister G, Hoffman G, Ramadan N, Hartung A, Feng Y, Kipp DR, Quinn C, Fodor M, Baird J, Schoumacher M, Meyer R, Deeds J, Buchwalter G, Stams T, Keen N, Sellers WR, Brown M, Pagliarini RA. Elife 5 (2016)
  107. Glutamine activates peroxisome proliferator-activated receptor-γ in intestinal epithelial cells via 15-S-HETE and 13-OXO-ODE: a novel mechanism. Ban K, Sprunt JM, Martin S, Yang P, Kozar RA. Am. J. Physiol. Gastrointest. Liver Physiol. 301 G547-54 (2011)
  108. Modulation of Macrophage Gene Expression via Liver X Receptor α Serine 198 Phosphorylation. Wu C, Hussein MA, Shrestha E, Leone S, Aiyegbo MS, Lambert WM, Pourcet B, Cardozo T, Gustafson JA, Fisher EA, Pineda-Torra I, Garabedian MJ. Mol. Cell. Biol. 35 2024-2034 (2015)
  109. Noncoding Variants Connect Enhancer Dysregulation with Nuclear Receptor Signaling in Hematopoietic Malignancies. Li K, Zhang Y, Liu X, Liu Y, Gu Z, Cao H, Dickerson KE, Chen M, Chen W, Shao Z, Ni M, Xu J. Cancer Discov 10 724-745 (2020)
  110. Phosphorylation of the retinoic acid receptor alpha induces a mechanical allosteric regulation and changes in internal dynamics. Chebaro Y, Amal I, Rochel N, Rochette-Egly C, Stote RH, Dejaegere A. PLoS Comput. Biol. 9 e1003012 (2013)
  111. Structural basis of the transactivation deficiency of the human PPARγ F360L mutant associated with familial partial lipodystrophy. Lori C, Pasquo A, Montanari R, Capelli D, Consalvi V, Chiaraluce R, Cervoni L, Loiodice F, Laghezza A, Aschi M, Giorgi A, Pochetti G. Acta Crystallogr D Biol Crystallogr 70 1965-1976 (2014)
  112. Letter Structure-function relationships in nuclear receptors: the facts. Moras D, Billas IM, Rochel N, Klaholz BP. Trends Biochem. Sci. 40 287-290 (2015)
  113. Connectivity Analyses of Bioenergetic Changes in Schizophrenia: Identification of Novel Treatments. Sullivan CR, Mielnik CA, O'Donovan SM, Funk AJ, Bentea E, DePasquale EA, Alganem K, Wen Z, Haroutunian V, Katsel P, Ramsey AJ, Meller J, McCullumsmith RE. Mol Neurobiol 56 4492-4517 (2019)
  114. Cross-talk between the ligand- and DNA-binding domains of estrogen receptor. Huang W, Greene GL, Ravikumar KM, Yang S. Proteins 81 1900-1909 (2013)
  115. Effects of 4-nonylphenol on hepatic gene expression of peroxisome proliferator-activated receptors and cytochrome P450 isoforms (CYP1A1 and CYP3A4) in juvenile sole (Solea solea). Cocci P, Mosconi G, Palermo FA. Chemosphere 93 1176-1181 (2013)
  116. In silico profiling for secondary metabolites from Lepidium meyenii (maca) by the pharmacophore and ligand-shape-based joint approach. Yi F, Tan XL, Yan X, Liu HB. Chin Med 11 42 (2016)
  117. Mangosteen Extract Attenuates the Metabolic Disorders of High-Fat-Fed Mice by Activating AMPK. Chae HS, Kim YM, Bae JK, Sorchhann S, Yim S, Han L, Paik JH, Choi YH, Chin YW. J Med Food 19 148-154 (2016)
  118. PPARγ neddylation essential for adipogenesis is a potential target for treating obesity. Park HS, Ju UI, Park JW, Song JY, Shin DH, Lee KH, Jeong LS, Yu J, Lee HW, Cho JY, Kim SY, Kim SW, Kim JB, Park KS, Chun YS. Cell Death Differ. 23 1296-1311 (2016)
  119. Revealing a steroid receptor ligand as a unique PPARγ agonist. Lin S, Han Y, Shi Y, Rong H, Zheng S, Jin S, Lin SY, Lin SC, Li Y. Cell Res. 22 746-756 (2012)
  120. The nuclear receptor signalling scaffold: insights from full-length structures. Nwachukwu JC, Nettles KW. EMBO J. 31 251-253 (2012)
  121. The optimal corepressor function of nuclear receptor corepressor (NCoR) for peroxisome proliferator-activated receptor γ requires G protein pathway suppressor 2. Guo C, Li Y, Gow CH, Wong M, Zha J, Yan C, Liu H, Wang Y, Burris TP, Zhang J. J. Biol. Chem. 290 3666-3679 (2015)
  122. Anti-atherogenic effect of BHB-TZD having inhibitory activities on cyclooxygenase and 5-lipoxygenase in hyperlipidemic mice. Choi JH, Jeon HJ, Park JG, Sonn SK, Lee MR, Lee MN, You HJ, Kim GY, Kim JH, Lee MH, Kwon OS, Nam KH, Kim HC, Jeong TS, Lee WS, Oh GT. Atherosclerosis 212 146-152 (2010)
  123. Conjugated bilirubin affects cytokine profiles in hepatitis A virus infection by modulating function of signal transducer and activator of transcription factors. Castro-García FP, Corral-Jara KF, Escobedo-Melendez G, Sandoval-Hernandez MA, Rosenstein Y, Roman S, Panduro A, Fierro NA. Immunology 143 578-587 (2014)
  124. Dissecting the Relation between a nuclear receptor and GATA: binding affinity studies of thyroid hormone receptor and GATA2 on TSHβ promoter. Figueira AC, Polikarpov I, Veprintsev D, Santos GM. PLoS One 5 e12628 (2010)
  125. Suppression of ERR targets by a PPARα/Sirt1 complex in the failing heart. Oka S, Zhai P, Alcendor R, Park JY, Tian B, Sadoshima J. Cell Cycle 11 856-864 (2012)
  126. Agonist ligands mediate the transcriptional response of nuclear receptor heterodimers through distinct stoichiometric assemblies with coactivators. Pavlin MR, Brunzelle JS, Fernandez EJ. J. Biol. Chem. 289 24771-24778 (2014)
  127. Analysis of RXR/THR and RXR/PPARG2 heterodimerization by bioluminescence resonance energy transfer (BRET). Mulero M, Perroy J, Federici C, Cabello G, Ollendorff V. PLoS ONE 8 e84569 (2013)
  128. Bilobetin ameliorates insulin resistance by PKA-mediated phosphorylation of PPARα in rats fed a high-fat diet. Kou XH, Zhu MF, Chen D, Lu Y, Song HZ, Ye JL, Yue LF. Br. J. Pharmacol. 165 2692-2706 (2012)
  129. Catalpol reduces the production of inflammatory mediators via PPAR-γ activation in human intestinal Caco-2 cells. Park KS. J Nat Med 70 620-626 (2016)
  130. Cloning and functional analysis of the ecdysteroid receptor complex in the opossum shrimp Neomysis integer (Leach, 1814). De Wilde R, Swevers L, Soin T, Christiaens O, Rougé P, Cooreman K, Janssen CR, Smagghe G. Aquat. Toxicol. 130-131 31-40 (2013)
  131. Combination of peroxisome proliferator-activated receptor gamma and retinoid X receptor agonists induces sodium/iodide symporter expression and inhibits cell growth of human thyroid cancer cells. Chen JY, Wang JJ, Lee HC, Chi CW, Lee CH, Hsu YC. J Chin Med Assoc 83 923-930 (2020)
  132. Gene-specific alterations of hepatic gene expression by ligand activation or hepatocyte-selective inhibition of retinoid X receptor-α signalling during inflammation. Kosters A, Tian F, Wan YJ, Karpen SJ. Liver Int. 32 321-330 (2012)
  133. Molecular modelling study of the PPARγ receptor in relation to the mode of action/adverse outcome pathway framework for liver steatosis. Tsakovska I, Al Sharif M, Alov P, Diukendjieva A, Fioravanzo E, Cronin MT, Pajeva I. Int J Mol Sci 15 7651-7666 (2014)
  134. Introductory Journal Article Nuclear hormone receptors: allosteric switches. McEwan IJ. Mol. Cell. Endocrinol. 348 345-347 (2012)
  135. Operator recognition by the ROK transcription factor family members, NagC and Mlc. Bréchemier-Baey D, Domínguez-Ramírez L, Oberto J, Plumbridge J. Nucleic Acids Res. 43 361-372 (2015)
  136. PPARγ activation attenuates glycated-serum induced pancreatic beta-cell dysfunction through enhancing Pdx1 and Mafa protein stability. Zhu Y, Ma A, Zhang H, Li C. PLoS ONE 8 e56386 (2013)
  137. Peptidylprolyl Isomerase Pin1 Directly Enhances the DNA Binding Functions of Estrogen Receptor α. Rajbhandari P, Ozers MS, Solodin NM, Warren CL, Alarid ET. J. Biol. Chem. 290 13749-13762 (2015)
  138. Phthalate exposure during pregnancy and long-term weight gain in women. Rodríguez-Carmona Y, Cantoral A, Trejo-Valdivia B, Téllez-Rojo MM, Svensson K, Peterson KE, Meeker JD, Schnaas L, Solano M, Watkins DJ. Environ Res 169 26-32 (2019)
  139. RXR agonist modulates TR: corepressor dissociation upon 9-cis retinoic acid treatment. Fattori J, Campos JL, Doratioto TR, Assis LM, Vitorino MT, Polikarpov I, Xavier-Neto J, Figueira AC. Mol. Endocrinol. 29 258-273 (2015)
  140. Structural basis of natural promoter recognition by the retinoid X nuclear receptor. Osz J, McEwen AG, Poussin-Courmontagne P, Moutier E, Birck C, Davidson I, Moras D, Rochel N. Sci Rep 5 8216 (2015)
  141. Synergistic Regulation of Coregulator/Nuclear Receptor Interaction by Ligand and DNA. de Vera IMS, Zheng J, Novick S, Shang J, Hughes TS, Brust R, Munoz-Tello P, Gardner WJ, Marciano DP, Kong X, Griffin PR, Kojetin DJ. Structure 25 1506-1518.e4 (2017)
  142. Theoretical modeling of multiprotein complexes by iSPOT: Integration of small-angle X-ray scattering, hydroxyl radical footprinting, and computational docking. Huang W, Ravikumar KM, Parisien M, Yang S. J. Struct. Biol. 196 340-349 (2016)
  143. Astroglial β-Arrestin1-mediated Nuclear Signaling Regulates the Expansion of Neural Precursor Cells in Adult Hippocampus. Tao Y, Ma L, Liao Z, Le Q, Yu J, Liu X, Li H, Chen Y, Zheng P, Yang Z, Ma L. Sci Rep 5 15506 (2015)
  144. Bladder-cancer-associated mutations in RXRA activate peroxisome proliferator-activated receptors to drive urothelial proliferation. Halstead AM, Kapadia CD, Bolzenius J, Chu CE, Schriefer A, Wartman LD, Bowman GR, Arora VK. Elife 6 (2017)
  145. Correlation between sequence, structure and function for trisporoid processing proteins in the model zygomycete Mucor mucedo. Ellenberger S, Schuster S, Wöstemeyer J. J. Theor. Biol. 320 66-75 (2013)
  146. Hydrogen Sulfide Up-Regulates the Expression of ATP-Binding Cassette Transporter A1 via Promoting Nuclear Translocation of PPARα. Li D, Xiong Q, Peng J, Hu B, Li W, Zhu Y, Shen X. Int J Mol Sci 17 (2016)
  147. PPARγ activation by troglitazone enhances human lung cancer cells to TRAIL-induced apoptosis via autophagy flux. Nazim UM, Moon JH, Lee YJ, Seol JW, Park SY. Oncotarget 8 26819-26831 (2017)
  148. Phosphorylation of PPARγ Affects the Collective Motions of the PPARγ-RXRα-DNA Complex. Lemkul JA, Lewis SN, Bassaganya-Riera J, Bevan DR. PLoS ONE 10 e0123984 (2015)
  149. Small heterodimer partner-interacting leucine zipper protein inhibits adipogenesis by regulating peroxisome proliferator-activated receptor γ activity. Jang H, Kim HJ, Kim DH, Park JK, Sun WS, Hwang S, Oh KB, Jang WG, Lee JW. Life Sci. 132 49-54 (2015)
  150. Stability of the Retinoid X Receptor-α Homodimer in the Presence and Absence of Rexinoid and Coactivator Peptide. Yang Z, Muccio DD, Melo N, Atigadda VR, Renfrow MB. Biochemistry 60 1165-1177 (2021)
  151. Structures of PPARγ complexed with lobeglitazone and pioglitazone reveal key determinants for the recognition of antidiabetic drugs. Lee MA, Tan L, Yang H, Im YG, Im YJ. Sci Rep 7 16837 (2017)
  152. The G32E functional variant reduces activity of PPARD by nuclear export and post-translational modification in pigs. Duan Y, Brenig B, Wu X, Ren J, Huang L. PLoS ONE 8 e75925 (2013)
  153. The N-terminus of ecdysteroid receptor isoforms and ultraspiracle interacts with different ecdysteroid response elements in a sequence specific manner to modulate transcriptional activity. Schauer S, Callender J, Henrich VC, Spindler-Barth M. J. Steroid Biochem. Mol. Biol. 124 84-92 (2011)
  154. A Novel ESRRB Deletion Is a Rare Cause of Autosomal Recessive Nonsyndromic Hearing Impairment among Pakistani Families. Lee K, Khan S, Ansar M, Santos-Cortez RL, Ahmad W, Leal SM. Genet Res Int 2011 368915 (2011)
  155. Design and synthesis of novel Y-shaped barbituric acid derivatives as PPARγ activators. Dixit VA, Rathi PC, Bhagat S, Gohlke H, Petersen RK, Kristiansen K, Chakraborti AK, Bharatam PV. Eur J Med Chem 108 423-435 (2016)
  156. Expression, purification and primary crystallographic study of human androgen receptor in complex with DNA and coactivator motifs. Zhou XE, Suino-Powell K, Ludidi PL, McDonnell DP, Xu HE. Protein Expr. Purif. 71 21-27 (2010)
  157. Integrated Structural Modeling of Full-Length LRH-1 Reveals Inter-domain Interactions Contribute to Receptor Structure and Function. Seacrist CD, Kuenze G, Hoffmann RM, Moeller BE, Burke JE, Meiler J, Blind RD. Structure 28 830-846.e9 (2020)
  158. Investigations on Binding Pattern of Kinase Inhibitors with PPARγ: Molecular Docking, Molecular Dynamic Simulations, and Free Energy Calculation Studies. Mazumder M, Ponnan P, Das U, Gourinath S, Khan HA, Yang J, Sakharkar MK. PPAR Res 2017 6397836 (2017)
  159. Congresses Meeting report: nuclear receptors: transcription factors and drug targets connecting basic research with translational medicine. Tuckermann J, Bourguet W, Mandrup S. Mol. Endocrinol. 24 1311-1321 (2010)
  160. Profiling of 3696 Nuclear Receptor-Coregulator Interactions: A Resource for Biological and Clinical Discovery. Broekema MF, Hollman DAA, Koppen A, van den Ham HJ, Melchers D, Pijnenburg D, Ruijtenbeek R, van Mil SWC, Houtman R, Kalkhoven E. Endocrinology 159 2397-2407 (2018)
  161. Stevioside attenuates isoproterenol-induced mouse myocardial fibrosis through inhibition of the myocardial NF-κB/TGF-β1/Smad signaling pathway. Wang J, Shen W, Zhang JY, Jia CH, Xie ML. Food Funct 10 1179-1190 (2019)
  162. Structural Basis for the Enhanced Anti-Diabetic Efficacy of Lobeglitazone on PPARγ. Jang JY, Bae H, Lee YJ, Choi YI, Kim HJ, Park SB, Suh SW, Kim SW, Han BW. Sci Rep 8 31 (2018)
  163. Structure of full-length PPARgamma-RXRalpha: a snapshot of a functional complex? Moras D. Cell Metab. 9 8-10 (2009)
  164. miR-26b promoter analysis reveals regulatory mechanisms by lipid-related transcription factors in goat mammary epithelial cells. Wang H, Luo J, He Q, Yao D, Wu J, Loor JJ. J. Dairy Sci. 100 5837-5849 (2017)
  165. A structural mechanism of nuclear receptor biased agonism. Nemetchek MD, Chrisman IM, Rayl ML, Voss AH, Hughes TS. Proc Natl Acad Sci U S A 119 e2215333119 (2022)
  166. Acetylation of lysine 109 modulates pregnane X receptor DNA binding and transcriptional activity. Pasquel D, Doricakova A, Li H, Kortagere S, Krasowski MD, Biswas A, Walton WG, Redinbo MR, Dvorak Z, Mani S. Biochim. Biophys. Acta 1859 1155-1169 (2016)
  167. Allosteric interactions prime androgen receptor dimerization and activation. Wasmuth EV, Broeck AV, LaClair JR, Hoover EA, Lawrence KE, Paknejad N, Pappas K, Matthies D, Wang B, Feng W, Watson PA, Zinder JC, Karthaus WR, de la Cruz MJ, Hite RK, Manova-Todorova K, Yu Z, Weintraub ST, Klinge S, Sawyers CL. Mol Cell 82 2021-2031.e5 (2022)
  168. Chiglitazar Preferentially Regulates Gene Expression via Configuration-Restricted Binding and Phosphorylation Inhibition of PPARγ. Pan DS, Wang W, Liu NS, Yang QJ, Zhang K, Zhu JZ, Shan S, Li ZB, Ning ZQ, Huang L, Lu XP. PPAR Res 2017 4313561 (2017)
  169. ERRα inhibitor acts as a potential agonist of PPARγ to induce cell apoptosis and inhibit cell proliferation in endometrial cancer. Huang M, Chen L, Mao X, Liu G, Gao Y, You X, Gao M, Sehouli J, Sun P. Aging (Albany NY) 12 23029-23046 (2020)
  170. HDX reveals the conformational dynamics of DNA sequence specific VDR co-activator interactions. Zheng J, Chang MR, Stites RE, Wang Y, Bruning JB, Pascal BD, Novick SJ, Garcia-Ordonez RD, Stayrook KR, Chalmers MJ, Dodge JA, Griffin PR. Nat Commun 8 923 (2017)
  171. Identification of functionally relevant lysine residues that modulate human farnesoid X receptor activation. Sun AQ, Luo Y, Backos DS, Xu S, Balasubramaniyan N, Reigan P, Suchy FJ. Mol. Pharmacol. 83 1078-1086 (2013)
  172. Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor β/δ upon Ligand Binding. Schwarz R, Tänzler D, Ihling CH, Sinz A. PLoS ONE 11 e0151412 (2016)
  173. Multi-conformation dynamic pharmacophore modeling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists. Sohn YS, Park C, Lee Y, Kim S, Thangapandian S, Kim Y, Kim HH, Suh JK, Lee KW. J. Mol. Graph. Model. 46 1-9 (2013)
  174. Mutual information identifies sequence positions conserved within the nuclear receptor superfamily: approach reveals functionally important regions for DNA binding specificity. Willis S, Griffin PR. Nucl Recept Signal 9 e001 (2011)
  175. Myotubularin-related protein 7 activates peroxisome proliferator-activated receptor-gamma. Weidner P, Söhn M, Schroeder T, Helm L, Hauber V, Gutting T, Betge J, Röcken C, Rohrbacher FN, Pattabiraman VR, Bode JW, Seger R, Saar D, Nunes-Alves A, Wade RC, Ebert MPA, Burgermeister E. Oncogenesis 9 59 (2020)
  176. Congresses Nuclear hormone receptor architecture - form and dynamics: The 2009 FASEB Summer Conference on Dynamic Structure of the Nuclear Hormone Receptors. McEwan IJ, Nardulli AM. Nucl Recept Signal 7 e011 (2009)
  177. PPARγ Acetylation Orchestrates Adipose Plasticity and Metabolic Rhythms. He Y, B'nai Taub A, Yu L, Yao Y, Zhang R, Zahr T, Aaron N, LeSauter J, Fan L, Liu L, Tazebay R, Que J, Pajvani U, Wang L, Silver R, Qiang L. Adv Sci (Weinh) 10 e2204190 (2023)
  178. PPARγ non-covalent antagonists exhibit mutable binding modes with a similar free energy of binding: a case study. Fratev F. J. Biomol. Struct. Dyn. 35 476-485 (2017)
  179. Re-polarization of immunosuppressive macrophages to tumor-cytotoxic macrophages by repurposed metabolic drugs. Oyarce C, Vizcaino-Castro A, Chen S, Boerma A, Daemen T. Oncoimmunology 10 1898753 (2021)
  180. Remodeling of gene regulatory networks underlying thermogenic stimuli-induced adipose beiging. Lee S, Benvie AM, Park HG, Spektor R, Harlan B, Brenna JT, Berry DC, Soloway PD. Commun Biol 5 584 (2022)
  181. Solution Behavior of the Intrinsically Disordered N-Terminal Domain of Retinoid X Receptor α in the Context of the Full-Length Protein. Belorusova A, Osz J, Petoukhov MV, Peluso-Iltis C, Kieffer B, Svergun DI, Rochel N. Biochemistry 55 1741-1748 (2016)
  182. The Affymetrix DMET Plus platform reveals unique distribution of ADME-related variants in ethnic Arabs. Wakil SM, Nguyen C, Muiya NP, Andres E, Lykowska-Tarnowska A, Baz B, Tahir AI, Meyer BF, Morahan G, Dzimiri N. Dis. Markers 2015 542543 (2015)
  183. The Nuclear Receptor PPARγ Controls Progressive Macrophage Polarization as a Ligand-Insensitive Epigenomic Ratchet of Transcriptional Memory. Daniel B, Nagy G, Czimmerer Z, Horvath A, Hammers DW, Cuaranta-Monroy I, Poliska S, Tzerpos P, Kolostyak Z, Hays TT, Patsalos A, Houtman R, Sauer S, Francois-Deleuze J, Rastinejad F, Balint BL, Sweeney HL, Nagy L. Immunity 49 615-626.e6 (2018)
  184. The Small Molecule Hyperphyllin Enhances Leaf Formation Rate and Mimics Shoot Meristem Integrity Defects Associated with AMP1 Deficiency. Poretska O, Yang S, Pitorre D, Rozhon W, Zwerger K, Uribe MC, May S, McCourt P, Poppenberger B, Sieberer T. Plant Physiol. 171 1277-1290 (2016)
  185. The androgen receptor depends on ligand-binding domain dimerization for transcriptional activation. El Kharraz S, Dubois V, van Royen ME, Houtsmuller AB, Pavlova E, Atanassova N, Nguyen T, Voet A, Eerlings R, Handle F, Prekovic S, Smeets E, Moris L, Devlies W, Ohlsson C, Poutanen M, Verstrepen KJ, Carmeliet G, Launonen KM, Helminen L, Palvimo JJ, Libert C, Vanderschueren D, Helsen C, Claessens F. EMBO Rep 22 e52764 (2021)
  186. The antidiabetic drug troglitazone protects against PrP (106‑126)‑induced neurotoxicity via the PPARγ‑autophagy pathway in neuronal cells. Moon JH, Hong JM, Park SY. Mol Med Rep 23 430 (2021)
  187. Transient expression, purification and characterisation of human full-length PPARγ2 in HEK293 cells. Liu J, Ormö M, Nyström AC, Claesson J, Giordanetto F. Protein Expr. Purif. 89 189-195 (2013)
  188. Unraveling the Hierarchy of cis and trans Factors That Determine the DNA Binding by Peroxisome Proliferator-Activated Receptor γ. Nagy G, Daniel B, Cuaranta-Monroy I, Nagy L. Mol Cell Biol 40 (2020)
  189. A noncanonical PPARγ/RXRα-binding sequence regulates leptin expression in response to changes in adipose tissue mass. Zhang Y, Dallner OS, Nakadai T, Fayzikhodjaeva G, Lu YH, Lazar MA, Roeder RG, Friedman JM. Proc. Natl. Acad. Sci. U.S.A. 115 E6039-E6047 (2018)
  190. Bacterial expression, refolding, functional characterization, and mass spectrometric identification of full-length human PPAR-gamma. Li W, Yuan Y, Luo Z, Zheng X, Zhao L, Duan W, Yu Y. Biosci. Biotechnol. Biochem. 74 1173-1180 (2010)
  191. Bezafibrate Upregulates Mitochondrial Biogenesis and Influence Neural Differentiation of Human-Induced Pluripotent Stem Cells. Augustyniak J, Lenart J, Gaj P, Kolanowska M, Jazdzewski K, Stepien PP, Buzanska L. Mol. Neurobiol. 56 4346-4363 (2019)
  192. Chemical approaches to nuclear receptors in metabolism. Margolis RN, Moore DD, Willson TM, Guy RK. Sci Signal 2 mr5 (2009)
  193. Commentary: Parallel evolution of Molecular Endocrinology as a journal and a discipline: convergence of interests with the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK/NIH). Margolis R, Smith P. Mol. Endocrinol. 24 1697-1702 (2010)
  194. Comparative Study of PPARγ Targets in Human Extravillous and Villous Cytotrophoblasts. Liu F, Rouault C, Guesnon M, Zhu W, Clément K, Degrelle SA, Fournier T. PPAR Res 2020 9210748 (2020)
  195. DNA-induced unfolding of the thyroid hormone receptor α A/B domain through allostery. Fernandez EJ, Gahlot V, Rodriguez C, Amburn J. FEBS Open Bio 7 854-864 (2017)
  196. Development of a Magnetic Microbead Affinity Selection Screen (MagMASS) Using Mass Spectrometry for Ligands to the Retinoid X Receptor-α. Rush MD, Walker EM, Prehna G, Burton T, van Breemen RB. J. Am. Soc. Mass Spectrom. 28 479-485 (2017)
  197. Dynamics of nuclear receptors. Hamuro Y. Structure 18 1225-1227 (2010)
  198. Flightless-I Controls Fat Storage in Drosophila. Park JE, Lee EJ, Kim JK, Song Y, Choi JH, Kang MJ. Mol. Cells 41 603-611 (2018)
  199. Hidden modes of DNA binding by human nuclear receptors. Bhimsaria D, Rodríguez-Martínez JA, Mendez-Johnson JL, Ghoshdastidar D, Varadarajan A, Bansal M, Daniels DL, Ramanathan P, Ansari AZ. Nat Commun 14 4179 (2023)
  200. Identification and characterisation of a prototype for a new class of competitive PPARγ antagonists. Knape T, Flesch D, Kuchler L, Sha LK, Giegerich AK, Labocha S, Ferreirós N, Schmid T, Wurglics M, Schubert-Zsilavecz M, Proschak E, Brüne B, Parnham MJ, von Knethen A. Eur. J. Pharmacol. 755 16-26 (2015)
  201. In Silico Adoption of an Orphan Nuclear Receptor NR4A1. Lanig H, Reisen F, Whitley D, Schneider G, Banting L, Clark T. PLoS ONE 10 e0135246 (2015)
  202. Interaction of the phosphorylated DNA-binding domain in nuclear receptor CAR with its ligand-binding domain regulates CAR activation. Shizu R, Min J, Sobhany M, Pedersen LC, Mutoh S, Negishi M. J. Biol. Chem. 293 333-344 (2018)
  203. Ligand Dependent Switch from RXR Homo- to RXR-NURR1 Heterodimerization. Scheepstra M, Andrei SA, de Vries RMJM, Meijer FA, Ma JN, Burstein ES, Olsson R, Ottmann C, Milroy LG, Brunsveld L. ACS Chem Neurosci 8 2065-2077 (2017)
  204. Mesenchymal Stromal Cells Overexpressing Farnesoid X Receptor Exert Cardioprotective Effects Against Acute Ischemic Heart Injury by Binding Endogenous Bile Acids. Xia Y, Xu X, Guo Y, Lin C, Xu X, Zhang F, Fan M, Qi T, Li C, Hu G, Peng L, Wang S, Zhang L, Hai C, Liu R, Yan W, Tao L. Adv Sci (Weinh) 9 e2200431 (2022)
  205. Movements at the hemoglobin A-hemes and their role in ligand binding, analyzed by X-ray crystallography. Dodson E, Dodson G. Biopolymers 91 1056-1063 (2009)
  206. Multidomain architecture of estrogen receptor reveals interfacial cross-talk between its DNA-binding and ligand-binding domains. Huang W, Peng Y, Kiselar J, Zhao X, Albaqami A, Mendez D, Chen Y, Chakravarthy S, Gupta S, Ralston C, Kao HY, Chance MR, Yang S. Nat Commun 9 3520 (2018)
  207. New insights into the distribution, protein abundance and subcellular localisation of the endogenous peroxisomal biogenesis proteins PEX3 and PEX19 in different organs and cell types of the adult mouse. Colasante C, Chen J, Ahlemeyer B, Bonilla-Martinez R, Karnati S, Baumgart-Vogt E. PLoS ONE 12 e0183150 (2017)
  208. Optimization of Feasibility Stage for Hydrogen/Deuterium Exchange Mass Spectrometry. Hamuro Y, Coales SJ. J. Am. Soc. Mass Spectrom. 29 623-629 (2018)
  209. PPARγ in Complex with an Antagonist and Inverse Agonist: a Tumble and Trap Mechanism of the Activation Helix. Frkic RL, Marshall AC, Blayo AL, Pukala TL, Kamenecka TM, Griffin PR, Bruning JB. iScience 5 69-79 (2018)
  210. PPARγ population shift produces disease-related changes in molecular networks associated with metabolic syndrome. Jurkowski W, Roomp K, Crespo I, Schneider JG, Del Sol A. Cell Death Dis 2 e192 (2011)
  211. Plasticizers used in food-contact materials affect adipogenesis in 3T3-L1 cells. Pomatto V, Cottone E, Cocci P, Mozzicafreddo M, Mosconi G, Nelson ER, Palermo FA, Bovolin P. J. Steroid Biochem. Mol. Biol. 178 322-332 (2018)
  212. Potential retinoid x receptor agonists for treating Alzheimer's disease from traditional chinese medicine. Chen KC, Liu YC, Lee CC, Chen CY. Evid Based Complement Alternat Med 2014 278493 (2014)
  213. Probing the effect of MODY mutations near the co-activator-binding pocket of HNF4α. Rha GB, Wu G, Chi YI. Biosci. Rep. 31 411-419 (2011)
  214. Redox Regulation of PPARγ in Polarized Macrophages. Trümper V, Wittig I, Heidler J, Richter F, Brüne B, von Knethen A. PPAR Res 2020 8253831 (2020)
  215. Letter Response to Moras et al. Rastinejad F, Ollendorff V, Polikarpov I. Trends Biochem. Sci. 40 290-292 (2015)
  216. Selective, potent PPARgamma agonists with cyclopentenone core structure. Otero MP, Pérez Santín E, Rodríguez-Barrios F, Vaz B, de Lera AR. Bioorg. Med. Chem. Lett. 19 1883-1886 (2009)
  217. Single-Nucleotide Polymorphism of PPARγ, a Protein at the Crossroads of Physiological and Pathological Processes. Petrosino M, Lori L, Pasquo A, Lori C, Consalvi V, Minicozzi V, Morante S, Laghezza A, Giorgi A, Capelli D, Chiaraluce R. Int J Mol Sci 18 (2017)
  218. Steroid receptor-coregulator transcriptional complexes: new insights from CryoEM. Yi P, Yu X, Wang Z, O'Malley BW. Essays Biochem 65 857-866 (2021)
  219. Structural Insights of Transcriptionally Active, Full-Length Androgen Receptor Coactivator Complexes. Yu X, Yi P, Hamilton RA, Shen H, Chen M, Foulds CE, Mancini MA, Ludtke SJ, Wang Z, O'Malley BW. Mol Cell 79 812-823.e4 (2020)
  220. The Interaction of FABP with Kapα. Amber-Vitos O, Kucherenko N, Nachliel E, Gutman M, Tsfadia Y. PLoS ONE 10 e0132138 (2015)
  221. The Interactions of the 70 kDa Fragment of Cell Adhesion Molecule L1 with Topoisomerase 1, Peroxisome Proliferator-Activated Receptor γ and NADH Dehydrogenase (Ubiquinone) Flavoprotein 2 Are Involved in Gene Expression and Neuronal L1-Dependent Functions. Loers G, Kleene R, Bork U, Schachner M. Int J Mol Sci 24 2097 (2023)
  222. Tri-m-cresyl phosphate and PPAR/LXR interactions in seabream hepatocytes: revealed by computational modeling (docking) and transcriptional regulation of signaling pathways. Palermo FA, Cocci P, Mozzicafreddo M, Arukwe A, Angeletti M, Aretusi G, Mosconi G. Toxicol Res (Camb) 5 471-481 (2016)
  223. Troglitazone Inhibits Matrix Metalloproteinase-9 Expression and Invasion of Breast Cancer Cell through a Peroxisome Proliferator-Activated Receptor γ-Dependent Mechanism. Hong OY, Youn HJ, Jang HY, Jung SH, Noh EM, Chae HS, Jeong YJ, Kim W, Kim CH, Kim JS. J Breast Cancer 21 28-36 (2018)
  224. "Let my liver rather heat with wine" - a review of hepatic fibrosis pathophysiology and emerging therapeutics. Moscoso CG, Steer CJ. Hepat Med 11 109-129 (2019)
  225. A Novel Mechanism of Coactivator Recruitment by the Nurr1 Nuclear Receptor. Daffern N, Radhakrishnan I. J Mol Biol 434 167718 (2022)
  226. A propolis-derived small molecule ameliorates metabolic syndrome in obese mice by targeting the CREB/CRTC2 transcriptional complex. Chen Y, Wang J, Wang Y, Wang P, Zhou Z, Wu R, Xu Q, You H, Liu Y, Wang L, Zhou L, Wu Y, Hu L, Liu H, Liu Y. Nat Commun 13 246 (2022)
  227. Adaptation of extracellular matrix to massive small bowel resection in mice. Seiler KM, Goo WH, Zhang Q, Courtney C, Bajinting A, Guo J, Warner BW. J Pediatr Surg 55 1107-1112 (2020)
  228. Altered Peroxisome Proliferator-Activated Receptor Alpha Signaling in Variably Diseased Peripheral Arterial Segments. Engel C, Meade R, Harroun N, Penrose A, Shafqat M, Jin X, DeSilva G, Semenkovich C, Zayed M. Front Cardiovasc Med 9 834199 (2022)
  229. Arginine decreases peroxisome proliferator-activated receptor-γ activity via c-Jun. Ban K, Peng Z, Lin W, Kozar RA. Mol. Cell. Biochem. 362 7-13 (2012)
  230. Bisphenol A (BPA) binding on full-length architectures of estrogen receptor. Liu Y, Qu K, Hai Y, Zhao C. J. Cell. Biochem. 119 6784-6794 (2018)
  231. Characterization of an Agarophyton chilense Oleoresin Containing PPARγ Natural Ligands with Insulin-Sensitizing Effects in a C57Bl/6J Mouse Model of Diet-Induced Obesity and Antioxidant Activity in Caenorhabditis elegans. Pinto C, Ibáñez MR, Loyola G, León L, Salvatore Y, González C, Barraza V, Castañeda F, Aldunate R, Contreras-Porcia L, Fuenzalida K, Bronfman FC. Nutrients 13 1828 (2021)
  232. Cheonggukjang-Specific Component 1,3-Diphenyl-2-Propanone as a Novel PPARα/γ Dual Agonist: An In Vitro and In Silico Study. Arulkumar R, Jung HJ, Noh SG, Park D, Chung HY. Int J Mol Sci 22 10884 (2021)
  233. Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity. Penvose A, Keenan JL, Bray D, Ramlall V, Siggers T. Nat Commun 10 2514 (2019)
  234. Computational identification of potential chemoprophylactic agents according to dynamic behavior of peroxisome proliferator-activated receptor gamma. Yang Z, Zhao Y, Hao D, Wang H, Li S, Jia L, Yuan X, Zhang L, Meng L, Zhang S. RSC Adv 11 147-159 (2020)
  235. Conformational Changes of RORγ During Response Element Recognition and Coregulator Engagement. Strutzenberg TS, Zhu Y, Novick SJ, Garcia-Ordonez RD, Doebelin C, He Y, Chang MR, Kamenecka TM, Edwards DP, Griffin PR. J Mol Biol 433 167258 (2021)
  236. Crystal structures of the ligand-binding domain of human peroxisome proliferator-activated receptor δ in complexes with phenylpropanoic acid derivatives and a pyridine carboxylic acid derivative. Oyama T, Takiguchi K, Miyachi H. Acta Crystallogr F Struct Biol Commun 78 81-87 (2022)
  237. Curcumin inhibits the TGF-β1-dependent differentiation of lung fibroblasts via PPARγ-driven upregulation of cathepsins B and L. Saidi A, Kasabova M, Vanderlynden L, Wartenberg M, Kara-Ali GH, Marc D, Lecaille F, Lalmanach G. Sci Rep 9 491 (2019)
  238. Deciphering the interaction between Twist1 and PPARγ during adipocyte differentiation. Sun L, Ji S, Xie X, Si L, Liu S, Lin Y, Wang Y, Song Z, Fang N, An Y, Yang J. Cell Death Dis 14 764 (2023)
  239. Comment Dimeric p53 Mutant Elicits Unique Tumor-Suppressive Activities through an Altered Metabolic Program. Gencel-Augusto J, Su X, Qi Y, Whitley EM, Pant V, Xiong S, Shah V, Lin J, Perez E, Fiorotto ML, Mahmud I, Jain AK, Lorenzi PL, Navin NE, Richie ER, Lozano G. Cancer Discov 13 1230-1249 (2023)
  240. Discovery of peroxisome proliferator-activated receptor α (PPARα) activators with a ligand-screening system using a human PPARα-expressing cell line. Tachibana K, Yuzuriha T, Tabata R, Fukuda S, Maegawa T, Takahashi R, Tanimoto K, Tsujino H, Nunomura K, Lin B, Matsuura Y, Tanaka T, Hamakubo T, Sakai J, Kodama T, Kobayashi T, Ishimoto K, Miyachi H, Doi T. J. Biol. Chem. 293 10333-10343 (2018)
  241. Flow cytometry-based FRET identifies binding intensities in PPARγ1 protein-protein interactions in living cells. Trümper V, von Knethen A, Preuß A, Ermilov E, Hackbarth S, Kuchler L, Gunne S, Schäfer A, Bornhütter T, Vereb G, Ujlaky-Nagy L, Brüne B, Röder B, Schindler M, Parnham MJ, Knape T. Theranostics 9 5444-5463 (2019)
  242. Fragment Screening of RORγt Using Cocktail Crystallography: Identification of Simultaneous Binding of Multiple Fragments. Xue Y, Guo H, Hillertz P. ChemMedChem 11 1881-1885 (2016)
  243. Ginseng-derived panaxadiol ameliorates STZ-induced type 1 diabetes through inhibiting RORγ/IL-17A axis. Tian SY, Chen SM, Feng YY, He JL, Li Y. Acta Pharmacol Sin 44 1217-1226 (2023)
  244. Heterodimers of photoreceptor-specific nuclear receptor (PNR/NR2E3) and peroxisome proliferator-activated receptor-γ (PPARγ) are disrupted by retinal disease-associated mutations. Fulton J, Mazumder B, Whitchurch JB, Monteiro CJ, Collins HM, Chan CM, Clemente MP, Hernandez-Quiles M, Stewart EA, Amoaku WM, Moran PM, Mongan NP, Persson JL, Ali S, Heery DM. Cell Death Dis 8 e2677 (2017)
  245. In vitro and in silico analyses of Vicia faba L. on Peroxisome proliferator-activated receptor gamma. Prabhu DS, Rajeswari VD. J. Cell. Biochem. 119 7729-7737 (2018)
  246. Influence of helix 12 of Ultraspiracle on Drosophila melanogaster ecdysone receptor function. Tremmel Ch, Azoitei A, Schaefer M, Hollmann H, Spindler-Barth M. Insect Mol. Biol. 20 417-428 (2011)
  247. Integrative analysis reveals structural basis for transcription activation of Nurr1 and Nurr1-RXRα heterodimer. Zhao M, Wang N, Guo Y, Li J, Yin Y, Dong Y, Zhu J, Peng C, Xu T, Liu J. Proc Natl Acad Sci U S A 119 e2206737119 (2022)
  248. Integrative genome-wide analysis of dopaminergic neuron-specific PARIS expression in Drosophila dissects recognition of multiple PPAR-γ associated gene regulation. Yazar V, Kang SU, Ha S, Dawson VL, Dawson TM. Sci Rep 11 21500 (2021)
  249. Ligand Screening System for the RXRα Heterodimer Using the Fluorescence RXR Agonist CU-6PMN. Kawasaki M, Motoyama T, Yamada S, Watanabe M, Fujihara M, Kambe A, Nakano S, Kakuta H, Ito S. ACS Med Chem Lett 14 291-296 (2023)
  250. Ligand induced dissociation of the AR homodimer precedes AR monomer translocation to the nucleus. Shizu R, Yokobori K, Perera L, Pedersen L, Negishi M. Sci Rep 9 16734 (2019)
  251. Mapping the transcriptomic changes of endothelial compartment in human hippocampus across aging and mild cognitive impairment. Guebel DV, Torres NV, Acebes Á. Biol Open 10 bio057950 (2021)
  252. Microfibrillar-associated protein 5 suppresses adipogenesis by inhibiting essential coactivator of PPARγ. Zhang T, Li H, Sun S, Zhou W, Zhang T, Yu Y, Wang Q, Wang M. Sci Rep 13 5589 (2023)
  253. Microsecond MD Simulations to Explore the Structural and Energetic Differences between the Human RXRα-PPARγ vs. RXRα-PPARγ-DNA. Azam F, Bello M. Molecules 27 5778 (2022)
  254. Molecular dynamics articulated multilevel virtual screening protocol to discover novel dual PPAR α/γ agonists for anti-diabetic and metabolic applications. Mandal S, Faizan S, Raghavendra NM, Kumar BRP. Mol Divers (2022)
  255. Multi-Targeted Molecular Docking, Pharmacokinetics, and Drug-Likeness Evaluation of Okra-Derived Ligand Abscisic Acid Targeting Signaling Proteins Involved in the Development of Diabetes. Ashraf SA, Elkhalifa AEO, Mehmood K, Adnan M, Khan MA, Eltoum NE, Krishnan A, Baig MS. Molecules 26 5957 (2021)
  256. Natural helix 9 mutants of PPARγ differently affect its transcriptional activity. Broekema MF, Massink MPG, Donato C, de Ligt J, Schaarschmidt J, Borgman A, Schooneman MG, Melchers D, Gerding MN, Houtman R, Bonvin AMJJ, Majithia AR, Monajemi H, van Haaften GW, Soeters MR, Kalkhoven E. Mol Metab 20 115-127 (2019)
  257. New Sites for Old Suspects: Environmental Allosteric Modifiers of Nuclear Hormone Receptors. Asare B, Rajnarayanan R. J Pharmacol Clin Toxicol 3 (2015)
  258. Nuclear receptor RXRα binds the precursor of miR-103 to inhibit its maturation. Ye X, Yang Y, Yao J, Wang M, Liu Y, Xie G, Zeng Z, Zhang XK, Zhou H. BMC Biol 21 197 (2023)
  259. PML-RARα interaction with TRIB3 impedes PPARγ/RXR function and triggers dyslipidemia in acute promyelocytic leukemia. Li K, Wang F, Yang ZN, Cui B, Li PP, Li ZY, Hu ZW, Zhu HH. Theranostics 10 10326-10340 (2020)
  260. PPAR-γ Agonist GW1929 Targeted to Macrophages with Dendrimer-Graphene Nanostars Reduces Liver Fibrosis and Inflammation. Moreno-Lanceta A, Medrano-Bosch M, Simón-Codina B, Barber-González M, Jiménez W, Melgar-Lesmes P. Pharmaceutics 15 1452 (2023)
  261. PPARβ/δ recruits NCOR and regulates transcription reinitiation of ANGPTL4. Legrand N, Bretscher CL, Zielke S, Wilke B, Daude M, Fritz B, Diederich WE, Adhikary T. Nucleic Acids Res. 47 9573-9591 (2019)
  262. PPARγ Acetylation in Adipocytes Exacerbates BAT Whitening and Worsens Age-Associated Metabolic Dysfunction. He Y, Zhang R, Yu L, Zahr T, Li X, Kim TW, Qiang L. Cells 12 1424 (2023)
  263. PPARγ Interaction with UBR5/ATMIN Promotes DNA Repair to Maintain Endothelial Homeostasis. Li CG, Mahon C, Sweeney NM, Verschueren E, Kantamani V, Li D, Hennigs JK, Marciano DP, Diebold I, Abu-Halawa O, Elliott M, Sa S, Guo F, Wang L, Cao A, Guignabert C, Sollier J, Nickel NP, Kaschwich M, Cimprich KA, Rabinovitch M. Cell Rep 26 1333-1343.e7 (2019)
  264. PPARγ Transcription Deficiency Exacerbates High-Fat Diet-Induced Adipocyte Hypertrophy and Insulin Resistance in Mice. Guo F, Xu S, Zhu Y, Zheng X, Lu Y, Tu J, He Y, Jin L, Li Y. Front Pharmacol 11 1285 (2020)
  265. PPARγ lipodystrophy mutants reveal intermolecular interactions required for enhancer activation. Madsen MS, Broekema MF, Madsen MR, Koppen A, Borgman A, Gräwe C, Thomsen EGK, Westland D, Kranendonk MEG, Koerkamp MG, Hamers N, Bonvin AMJJ, Pittol JMR, Natarajan KN, Kersten S, Holstege FCP, Monajemi H, van Mil SWC, Vermeulen M, Kragelund BB, Cassiman D, Mandrup S, Kalkhoven E. Nat Commun 13 7090 (2022)
  266. PPARγ phase separates with RXRα at PPREs to regulate target gene expression. Li Z, Luo L, Yu W, Li P, Ou D, Liu J, Ma H, Sun Q, Liang A, Huang C, Chi T, Huang X, Zhang Y. Cell Discov 8 37 (2022)
  267. Pemafibrate Pretreatment Attenuates Apoptosis and Autophagy during Hepatic Ischemia-Reperfusion Injury by Modulating JAK2/STAT3β/PPARα Pathway. Cheng Z, Guo C. PPAR Res 2021 6632137 (2021)
  268. Peroxisome Proliferator-Activated Receptor γ Regulates Lipid Metabolism in Sheep Trophoblast Cells through mTOR Pathway-Mediated Autophagy. Hao K, Wang J, Yu H, Chen L, Zeng W, Wang Z, Hu G. PPAR Res 2023 6422804 (2023)
  269. Peroxisome proliferator-activated receptor γ isoforms differentially regulate preadipocyte proliferation, apoptosis, and differentiation in chickens. Mu F, Jing Y, Ning B, Huang J, Cui T, Guo Y, You X, Yan X, Li H, Wang N. Poult Sci 99 6410-6421 (2020)
  270. Pharmacological Inhibition of PPARy Boosts HIV Reactivation and Th17 Effector Functions, While Preventing Progeny Virion Release and de novo Infection. Planas D, Fert A, Zhang Y, Goulet JP, Richard J, Finzi A, Ruiz MJ, Marchand LR, Chatterjee D, Chen H, Salinas TRW, Gosselin A, Cohen EA, Routy JP, Chomont N, Ancuta P. Pathog Immun 5 177-239 (2020)
  271. Phytochemical Analysis of the Methanolic Extract and Essential Oil from Leaves of Industrial Hemp Futura 75 Cultivar: Isolation of a New Cannabinoid Derivative and Biological Profile Using Computational Approaches. De Vita S, Finamore C, Chini MG, Saviano G, De Felice V, De Marino S, Lauro G, Casapullo A, Fantasma F, Trombetta F, Bifulco G, Iorizzi M. Plants (Basel) 11 1671 (2022)
  272. Quaternary glucocorticoid receptor structure highlights allosteric interdomain communication. Postel S, Wissler L, Johansson CA, Gunnarsson A, Gordon E, Collins B, Castaldo M, Köhler C, Öling D, Johansson P, Fröderberg Roth L, Beinsteiner B, Dainty I, Delaney S, Klaholz BP, Billas IML, Edman K. Nat Struct Mol Biol 30 286-295 (2023)
  273. RXR Agonists Enhance Lenalidomide Anti-Myeloma Activity and T Cell Functions while Retaining Glucose-Lowering Effect. Wu J, Wang X, Zhang M, Mathews P, Kang Y. Cells 12 1993 (2023)
  274. Recognition of fold- and function-specific sites in the ligand-binding domain of the thyroid hormone receptor-like family. Verma S, Chakraborti S, Singh OP, Pande V, Dixit R, Pandey AV, Pandey KC. Front Endocrinol (Lausanne) 13 981090 (2022)
  275. Retinoid X receptor ligand regulates RXRα/Nur77-dependent apoptosis via modulating its nuclear export and mitochondrial targeting. Wang L, Zheng Y, Gao X, Liu Y, You X. Int J Clin Exp Pathol 10 10770-10780 (2017)
  276. SIRT7 regulates lipogenesis in adipocytes through deacetylation of PPARγ2. Akter F, Tsuyama T, Yoshizawa T, Sobuz SU, Yamagata K. J Diabetes Investig 12 1765-1774 (2021)
  277. Sequence Variations in pxr (nr1i2) From Zebrafish (Danio rerio) Strains Affect Nuclear Receptor Function. Lille-Langøy R, Karlsen OA, Myklebust LM, Goldstone JV, Mork-Jansson A, Male R, Blumberg B, Stegeman JJ, Goksøyr A. Toxicol Sci 168 28-39 (2019)
  278. Single-Cell Analysis Reveals Regional Reprogramming During Adaptation to Massive Small Bowel Resection in Mice. Seiler KM, Waye SE, Kong W, Kamimoto K, Bajinting A, Goo WH, Onufer EJ, Courtney C, Guo J, Warner BW, Morris SA. Cell Mol Gastroenterol Hepatol 8 407-426 (2019)
  279. Stringing along the estrogen receptor to engage with DNA. Katzenellenbogen JA. Proc Natl Acad Sci U S A 120 e2300608120 (2023)
  280. Structural Basis for the Regulation of PPARγ Activity by Imatinib. Jang JY, Kim HJ, Han BW. Molecules 24 (2019)
  281. Structural and Dynamic Elucidation of a Non-acid PPARγ Partial Agonist: SR1988. Frkic RL, Chua BS, Shin Y, Pascal BD, Novick SJ, Kamenecka TM, Griffin PR, Bruning JB. Nucl Receptor Res 5 (2018)
  282. Structural basis of binding of homodimers of the nuclear receptor NR4A2 to selective Nur-responsive DNA elements. Jiang L, Dai S, Li J, Liang X, Qu L, Chen X, Guo M, Chen Z, Chen L, Wei H, Chen Y. J. Biol. Chem. 294 19795-19803 (2019)
  283. Structural basis of the farnesoid X receptor/retinoid X receptor heterodimer on inverted repeat DNA. Jiang L, Liu X, Liang X, Dai S, Wei H, Guo M, Chen Z, Xiao D, Chen Y. Comput Struct Biotechnol J 21 3149-3157 (2023)
  284. Structures of human TR4LBD-JAZF1 and TR4DBD-DNA complexes reveal the molecular basis of transcriptional regulation. Liu Y, Ma L, Li M, Tian Z, Yang M, Wu X, Wang X, Shang G, Xie M, Chen Y, Liu X, Jiang L, Wu W, Xu C, Xia L, Li G, Dai S, Chen Z. Nucleic Acids Res 51 1443-1457 (2023)
  285. Synergistic Effects of Ginsenoside Rb3 and Ferruginol in Ischemia-Induced Myocardial Infarction. Chen X, Liu T, Wang Q, Wang H, Xue S, Jiang Q, Li J, Li C, Wang W, Wang Y. Int J Mol Sci 23 15935 (2022)
  286. Synthesis and biological evaluation of (3/4-(pyrimidin-2-ylamino)benzoyl)-based hydrazine-1-carboxamide/carbothioamide derivatives as novel RXRα antagonists. Qin J, Liu J, Wu C, Xu J, Tang B, Guo K, Chen X, Liu W, Wu T, Zhou H, Fang M, Wu Z. J Enzyme Inhib Med Chem 35 880-896 (2020)
  287. T-Cell Death Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis Kim S, Lee N, Park ES, Yun H, Ha TU, Jeon H, Yu J, Choi S, Shin B, Yu J, Rhee SD, Choi Y, Rho J. Mol Cells 44 1-12 (2021)
  288. Telmisartan suppresses cardiomyocyte and alveolar wall hypertrophy by the PPARγ-ERK-NFAT complex by changing the balance of PPARγ and ERK. Ma C, Pu Y, Xue H, Liu Y. Int J Clin Exp Pathol 12 3235-3246 (2019)
  289. The Antagonist Effect of Arachidonic Acid on GLUT4 Gene Expression by Nuclear Receptor Type II Regulation. Moreno-Santos I, Garcia-Serrano S, Boughanem H, Garrido-Sanchez L, Tinahones FJ, Garcia-Fuentes E, Macias-Gonzalez M. Int J Mol Sci 20 (2019)
  290. The conformational dynamics of H2-H3n and S2-H6 in gating ligand entry into the buried binding cavity of vitamin D receptor. Tee WV, Ripen AM, Mohamad SB. Sci Rep 6 35937 (2016)
  291. Triphenyl phosphate is a selective PPARγ modulator that does not induce brite adipogenesis in vitro and in vivo. Kim S, Rabhi N, Blum BC, Hekman R, Wynne K, Emili A, Farmer S, Schlezinger JJ. Arch Toxicol 94 3087-3103 (2020)
  292. ZNF148 inhibits HBV replication by downregulating RXRα transcription. Yao X, Xu K, Tao N, Cheng S, Chen H, Zhang D, Yang M, Tan M, Yu H, Chen P, Zhan Z, He S, Li R, Wang C, Wu D, Ren J. Virol J 21 35 (2024)