3j7q Citations

Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution.

OpenAccess logo Cell 157 1632-43 (2014)
Related entries: 3j7o, 3j7p, 3j7r

Cited: 224 times
EuropePMC logo PMID: 24930395

Abstract

Cotranslational protein translocation is a universally conserved process for secretory and membrane protein biosynthesis. Nascent polypeptides emerging from a translating ribosome are either transported across or inserted into the membrane via the ribosome-bound Sec61 channel. Here, we report structures of a mammalian ribosome-Sec61 complex in both idle and translating states, determined to 3.4 and 3.9 Å resolution. The data sets permit building of a near-complete atomic model of the mammalian ribosome, visualization of A/P and P/E hybrid-state tRNAs, and analysis of a nascent polypeptide in the exit tunnel. Unprecedented chemical detail is observed for both the ribosome-Sec61 interaction and the conformational state of Sec61 upon ribosome binding. Comparison of the maps from idle and translating complexes suggests how conformational changes to the Sec61 channel could facilitate translocation of a secreted polypeptide. The high-resolution structure of the mammalian ribosome-Sec61 complex provides a valuable reference for future functional and structural studies.

Reviews - 3j7q mentioned but not cited (5)

Articles - 3j7q mentioned but not cited (19)

  1. Structure of the Sec61 channel opened by a signal sequence. Voorhees RM, Hegde RS. Science 351 88-91 (2016)
  2. Structure of the native Sec61 protein-conducting channel. Pfeffer S, Burbaum L, Unverdorben P, Pech M, Chen Y, Zimmermann R, Beckmann R, Förster F. Nat Commun 6 8403 (2015)
  3. Structural basis for membrane insertion by the human ER membrane protein complex. Pleiner T, Tomaleri GP, Januszyk K, Inglis AJ, Hazu M, Voorhees RM. Science 369 433-436 (2020)
  4. Structure of the post-translational protein translocation machinery of the ER membrane. Wu X, Cabanos C, Rapoport TA. Nature 566 136-139 (2019)
  5. Structural and mutational analysis of the ribosome-arresting human XBP1u. Shanmuganathan V, Schiller N, Magoulopoulou A, Cheng J, Braunger K, Cymer F, Berninghausen O, Beatrix B, Kohno K, von Heijne G, Beckmann R. Elife 8 e46267 (2019)
  6. Structure of the Inhibited State of the Sec Translocon. Gérard SF, Hall BS, Zaki AM, Corfield KA, Mayerhofer PU, Costa C, Whelligan DK, Biggin PC, Simmonds RE, Higgins MK. Mol Cell 79 406-415.e7 (2020)
  7. MetAP-like Ebp1 occupies the human ribosomal tunnel exit and recruits flexible rRNA expansion segments. Wild K, Aleksić M, Lapouge K, Juaire KD, Flemming D, Pfeffer S, Sinning I. Nat Commun 11 776 (2020)
  8. Coibamide A Targets Sec61 to Prevent Biogenesis of Secretory and Membrane Proteins. Tranter D, Paatero AO, Kawaguchi S, Kazemi S, Serrill JD, Kellosalo J, Vogel WK, Richter U, Mattos DR, Wan X, Thornburg CC, Oishi S, McPhail KL, Ishmael JE, Paavilainen VO. ACS Chem Biol 15 2125-2136 (2020)
  9. Structurally detailed coarse-grained model for Sec-facilitated co-translational protein translocation and membrane integration. Niesen MJ, Wang CY, Van Lehn RC, Miller TF. PLoS Comput Biol 13 e1005427 (2017)
  10. CellPAINT: Turnkey Illustration of Molecular Cell Biology. Gardner A, Autin L, Fuentes D, Maritan M, Barad BA, Medina M, Olson AJ, Grotjahn DA, Goodsell DS. Front Bioinform 1 660936 (2021)
  11. Mycolactone enhances the Ca2+ leak from endoplasmic reticulum by trapping Sec61 translocons in a Ca2+ permeable state. Bhadra P, Dos Santos S, Gamayun I, Pick T, Neumann C, Ogbechi J, Hall BS, Zimmermann R, Helms V, Simmonds RE, Cavalié A. Biochem J 478 4005-4024 (2021)
  12. Phenylbutyrate rescues the transport defect of the Sec61α mutations V67G and T185A for renin. Sicking M, Živná M, Bhadra P, Barešová V, Tirincsi A, Hadzibeganovic D, Hodaňová K, Vyleťal P, Sovová J, Jedličková I, Jung M, Bell T, Helms V, Bleyer AJ, Kmoch S, Cavalié A, Lang S. Life Sci Alliance 5 e202101150 (2022)
  13. Signal peptide mimicry primes Sec61 for client-selective inhibition. Rehan S, Tranter D, Sharp PP, Craven GB, Lowe E, Anderl JL, Muchamuel T, Abrishami V, Kuivanen S, Wenzell NA, Jennings A, Kalyanaraman C, Strandin T, Javanainen M, Vapalahti O, Jacobson MP, McMinn D, Kirk CJ, Huiskonen JT, Taunton J, Paavilainen VO. Nat Chem Biol 19 1054-1062 (2023)
  14. How does Sec63 affect the conformation of Sec61 in yeast? Bhadra P, Yadhanapudi L, Römisch K, Helms V. PLoS Comput Biol 17 e1008855 (2021)
  15. Structural insights into TRAP association with ribosome-Sec61 complex and translocon inhibition by a CADA derivative. Pauwels E, Shewakramani NR, De Wijngaert B, Camps A, Provinciael B, Stroobants J, Kalies KU, Hartmann E, Maes P, Vermeire K, Das K. Sci Adv 9 eadf0797 (2023)
  16. DoubleHelix: nucleic acid sequence identification, assignment and validation tool for cryo-EM and crystal structure models. Chojnowski G. Nucleic Acids Res 51 8255-8269 (2023)
  17. Effect of Sec61 interaction with Mpd1 on endoplasmic reticulum-associated degradation. Pereira F, Rettel M, Stein F, Savitski MM, Collinson I, Römisch K. PLoS One 14 e0211180 (2019)
  18. Image-centric compression of protein structures improves space savings. Staniscia L, Yu YW. BMC Bioinformatics 24 437 (2023)
  19. Variation in the ribosome interacting loop of the Sec61α from Giardia lamblia. Sinha A, Ray A, Ganguly S, Ghosh Dastidar S, Sarkar S. Biol Direct 10 56 (2015)


Reviews citing this publication (54)

  1. Protein export through the bacterial Sec pathway. Tsirigotaki A, De Geyter J, Šoštaric N, Economou A, Karamanou S. Nat Rev Microbiol 15 21-36 (2017)
  2. Mechanisms of integral membrane protein insertion and folding. Cymer F, von Heijne G, White SH. J Mol Biol 427 999-1022 (2015)
  3. Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity. Nogales E, Scheres SH. Mol Cell 58 677-689 (2015)
  4. Mechanistic insights into ER-associated protein degradation. Wu X, Rapoport TA. Curr Opin Cell Biol 53 22-28 (2018)
  5. Structural and Mechanistic Insights into Protein Translocation. Rapoport TA, Li L, Park E. Annu Rev Cell Dev Biol 33 369-390 (2017)
  6. Diversity and selectivity in mRNA translation on the endoplasmic reticulum. Reid DW, Nicchitta CV. Nat Rev Mol Cell Biol 16 221-231 (2015)
  7. Progesterone Receptor Signaling Mechanisms. Grimm SL, Hartig SM, Edwards DP. J Mol Biol 428 3831-3849 (2016)
  8. In Situ Cryo-Electron Tomography: A Post-Reductionist Approach to Structural Biology. Asano S, Engel BD, Baumeister W. J Mol Biol 428 332-343 (2016)
  9. Endoplasmic Reticulum-Associated Degradation and Lipid Homeostasis. Stevenson J, Huang EY, Olzmann JA. Annu Rev Nutr 36 511-542 (2016)
  10. An Update on Sec61 Channel Functions, Mechanisms, and Related Diseases. Lang S, Pfeffer S, Lee PH, Cavalié A, Helms V, Förster F, Zimmermann R. Front Physiol 8 887 (2017)
  11. The ribosome emerges from a black box. Ramakrishnan V. Cell 159 979-984 (2014)
  12. Targeting and translocation of proteins to the endoplasmic reticulum at a glance. Aviram N, Schuldiner M. J Cell Sci 130 4079-4085 (2017)
  13. The mechanisms of integral membrane protein biogenesis. Hegde RS, Keenan RJ. Nat Rev Mol Cell Biol 23 107-124 (2022)
  14. Toward a structural understanding of co-translational protein translocation. Voorhees RM, Hegde RS. Curr Opin Cell Biol 41 91-99 (2016)
  15. The biological functions of Naa10 - From amino-terminal acetylation to human disease. Dörfel MJ, Lyon GJ. Gene 567 103-131 (2015)
  16. Mechanistic insight into eukaryotic 60S ribosomal subunit biogenesis by cryo-electron microscopy. Greber BJ. RNA 22 1643-1662 (2016)
  17. Developments, applications, and prospects of cryo-electron microscopy. Benjin X, Ling L. Protein Sci 29 872-882 (2020)
  18. Dynamics of co-translational protein targeting. Elvekrog MM, Walter P. Curr Opin Chem Biol 29 79-86 (2015)
  19. Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development. Arenz S, Wilson DN. Mol Cell 61 3-14 (2016)
  20. A Case for Sec61 Channel Involvement in ERAD. Römisch K. Trends Biochem Sci 42 171-179 (2017)
  21. Translocation of Proteins through a Distorted Lipid Bilayer. Wu X, Rapoport TA. Trends Cell Biol 31 473-484 (2021)
  22. Structural analysis of ribosomal RACK1 and its role in translational control. Nielsen MH, Flygaard RK, Jenner LB. Cell Signal 35 272-281 (2017)
  23. Membrane protein structures without crystals, by single particle electron cryomicroscopy. Vinothkumar KR. Curr Opin Struct Biol 33 103-114 (2015)
  24. Structures of eukaryotic ribosomal stalk proteins and its complex with trichosanthin, and their implications in recruiting ribosome-inactivating proteins to the ribosomes. Choi AK, Wong EC, Lee KM, Wong KB. Toxins (Basel) 7 638-647 (2015)
  25. The Dynamic SecYEG Translocon. Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. Front Mol Biosci 8 664241 (2021)
  26. New Insights into Ribosome Structure and Function. Jobe A, Liu Z, Gutierrez-Vargas C, Frank J. Cold Spring Harb Perspect Biol 11 a032615 (2019)
  27. Roles of ribosomal proteins in the functioning of translational machinery of eukaryotes. Graifer D, Karpova G. Biochimie 109 1-17 (2015)
  28. Structure-based working model of SecDF, a proton-driven bacterial protein translocation factor. Tsukazaki T. FEMS Microbiol Lett 365 (2018)
  29. Toxins Utilize the Endoplasmic Reticulum-Associated Protein Degradation Pathway in Their Intoxication Process. Nowakowska-Gołacka J, Sominka H, Sowa-Rogozińska N, Słomińska-Wojewódzka M. Int J Mol Sci 20 E1307 (2019)
  30. Three-dimensional reconstruction of helical polymers. Egelman EH. Arch Biochem Biophys 581 54-58 (2015)
  31. Advances and challenges of membrane-protein complex production. Zorman S, Botte M, Jiang Q, Collinson I, Schaffitzel C. Curr Opin Struct Biol 32 123-130 (2015)
  32. Extensions, Extra Factors, and Extreme Complexity: Ribosomal Structures Provide Insights into Eukaryotic Translation. Weisser M, Ban N. Cold Spring Harb Perspect Biol 11 a032367 (2019)
  33. Single-particle cryo-electron microscopy of macromolecular complexes. Skiniotis G, Southworth DR. Microscopy (Oxf) 65 9-22 (2016)
  34. Emerging View on the Molecular Functions of Sec62 and Sec63 in Protein Translocation. Jung SJ, Kim H. Int J Mol Sci 22 12757 (2021)
  35. Structural Insights into tRNA Dynamics on the Ribosome. Agirrezabala X, Valle M. Int J Mol Sci 16 9866-9895 (2015)
  36. Function and dynamics of macromolecular complexes explored by integrative structural and computational biology. Purdy MD, Bennett BC, McIntire WE, Khan AK, Kasson PM, Yeager M. Curr Opin Struct Biol 27 138-148 (2014)
  37. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. Int J Mol Sci 23 143 (2021)
  38. The 55S mammalian mitochondrial ribosome and its tRNA-exit region. Kaushal PS, Sharma MR, Agrawal RK. Biochimie 114 119-126 (2015)
  39. The impact of recent improvements in cryo-electron microscopy technology on the understanding of bacterial ribosome assembly. Razi A, Britton RA, Ortega J. Nucleic Acids Res 45 1027-1040 (2017)
  40. The emerging role of calcium-modulating cyclophilin ligand in posttranslational insertion of tail-anchored proteins into the endoplasmic reticulum membrane. Yamamoto Y, Sakisaka T. J Biochem 157 419-429 (2015)
  41. Whither Ribosome Structure and Dynamics Research? (A Perspective). Frank J. J Mol Biol 428 3565-3569 (2016)
  42. Structural Basis of the Sec Translocon and YidC Revealed Through X-ray Crystallography. Tsukazaki T. Protein J 38 249-261 (2019)
  43. Biological Applications at the Cutting Edge of Cryo-Electron Microscopy. Dillard RS, Hampton CM, Strauss JD, Ke Z, Altomara D, Guerrero-Ferreira RC, Kiss G, Wright ER. Microsc Microanal 24 406-419 (2018)
  44. Dynamics of Co-translational Membrane Protein Integration and Translocation via the Sec Translocon. Niesen MJM, Zimmer MH, Miller TF. J Am Chem Soc 142 5449-5460 (2020)
  45. Signal Peptide Features Determining the Substrate Specificities of Targeting and Translocation Components in Human ER Protein Import. Lang S, Nguyen D, Bhadra P, Jung M, Helms V, Zimmermann R. Front Physiol 13 833540 (2022)
  46. Exploring the Structural Variability of Dynamic Biological Complexes by Single-Particle Cryo-Electron Microscopy. DiIorio MC, Kulczyk AW. Micromachines (Basel) 14 118 (2022)
  47. Cryo-electron microscopy of cholinesterases, present and future. Leung MR, Zeev-Ben-Mordehai T. J Neurochem 158 1236-1243 (2021)
  48. The Principles of Protein Targeting and Transport Across Cell Membranes. Chen Y, Shanmugam SK, Dalbey RE. Protein J 38 236-248 (2019)
  49. Sec61 complex/translocon: The role of an atypical ER Ca2+-leak channel in health and disease. Parys JB, Van Coppenolle F. Front Physiol 13 991149 (2022)
  50. Cryo-EM structures of the endoplasmic reticulum membrane complex. Bai L, Li H. FEBS J 289 102-112 (2022)
  51. Increasing the Efficiency of the Accumulation of Recombinant Proteins in Plant Cells: The Role of Transport Signal Peptides. Rozov SM, Deineko EV. Plants (Basel) 11 2561 (2022)
  52. Sec translocon has an insertase-like function in addition to polypeptide conduction through the channel. Ito K, Shimokawa-Chiba N, Chiba S. F1000Res 8 F1000 Faculty Rev-2126 (2019)
  53. Dynamic hydrogen-bond networks in bacterial protein secretion. Karathanou K, Bondar AN. FEMS Microbiol Lett 365 (2018)
  54. Quantitative Mass Spectrometry Characterizes Client Spectra of Components for Targeting of Membrane Proteins to and Their Insertion into the Membrane of the Human ER. Jung M, Zimmermann R. Int J Mol Sci 24 14166 (2023)

Articles citing this publication (146)

  1. Structure of the human 80S ribosome. Khatter H, Myasnikov AG, Natchiar SK, Klaholz BP. Nature 520 640-645 (2015)
  2. Architecture of the mammalian mechanosensitive Piezo1 channel. Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, Li R, Gao N, Xiao B, Yang M. Nature 527 64-69 (2015)
  3. Semi-automated selection of cryo-EM particles in RELION-1.3. Scheres SH. J Struct Biol 189 114-122 (2015)
  4. Structure of a yeast spliceosome at 3.6-angstrom resolution. Yan C, Hang J, Wan R, Huang M, Wong CC, Shi Y. Science 349 1182-1191 (2015)
  5. The Mammalian Ribo-interactome Reveals Ribosome Functional Diversity and Heterogeneity. Simsek D, Tiu GC, Flynn RA, Byeon GW, Leppek K, Xu AF, Chang HY, Barna M. Cell 169 1051-1065.e18 (2017)
  6. ZNF598 Is a Quality Control Sensor of Collided Ribosomes. Juszkiewicz S, Chandrasekaran V, Lin Z, Kraatz S, Ramakrishnan V, Hegde RS. Mol Cell 72 469-481.e7 (2018)
  7. Structure of the large ribosomal subunit from human mitochondria. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V. Science 346 718-722 (2014)
  8. The architecture of the mammalian respirasome. Gu J, Wu M, Guo R, Yan K, Lei J, Gao N, Yang M. Nature 537 639-643 (2016)
  9. Visualization of chemical modifications in the human 80S ribosome structure. Natchiar SK, Myasnikov AG, Kratzat H, Hazemann I, Klaholz BP. Nature 551 472-477 (2017)
  10. Structural basis for stop codon recognition in eukaryotes. Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V. Nature 524 493-496 (2015)
  11. Structure of the type VI secretion system contractile sheath. Kudryashev M, Wang RY, Brackmann M, Scherer S, Maier T, Baker D, DiMaio F, Stahlberg H, Egelman EH, Basler M. Cell 160 952-962 (2015)
  12. Cryo-EM enters a new era. Kühlbrandt W. Elife 3 e03678 (2014)
  13. Structure and assembly pathway of the ribosome quality control complex. Shao S, Brown A, Santhanam B, Hegde RS. Mol Cell 57 433-444 (2015)
  14. EMC Is Required to Initiate Accurate Membrane Protein Topogenesis. Chitwood PJ, Juszkiewicz S, Guna A, Shao S, Hegde RS. Cell 175 1507-1519.e16 (2018)
  15. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Marinko JT, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Chem Rev 119 5537-5606 (2019)
  16. Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Weis F, Giudice E, Churcher M, Jin L, Hilcenko C, Wong CC, Traynor D, Kay RR, Warren AJ. Nat Struct Mol Biol 22 914-919 (2015)
  17. Structural snapshots of actively translating human ribosomes. Behrmann E, Loerke J, Budkevich TV, Yamamoto K, Schmidt A, Penczek PA, Vos MR, Bürger J, Mielke T, Scheerer P, Spahn CM. Cell 161 845-857 (2015)
  18. Detection of RNA-Protein Interactions in Living Cells with SHAPE. Smola MJ, Calabrese JM, Weeks KM. Biochemistry 54 6867-6875 (2015)
  19. Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Braunger K, Pfeffer S, Shrimal S, Gilmore R, Berninghausen O, Mandon EC, Becker T, Förster F, Beckmann R. Science 360 215-219 (2018)
  20. Local and global influences on protein turnover in neurons and glia. Dörrbaum AR, Kochen L, Langer JD, Schuman EM. Elife 7 e34202 (2018)
  21. Crystal structure of a substrate-engaged SecY protein-translocation channel. Li L, Park E, Ling J, Ingram J, Ploegh H, Rapoport TA. Nature 531 395-399 (2016)
  22. Structure of the mitochondrial import gate reveals distinct preprotein paths. Araiso Y, Tsutsumi A, Qiu J, Imai K, Shiota T, Song J, Lindau C, Wenz LS, Sakaue H, Yunoki K, Kawano S, Suzuki J, Wischnewski M, Schütze C, Ariyama H, Ando T, Becker T, Lithgow T, Wiedemann N, Pfanner N, Kikkawa M, Endo T. Nature 575 395-401 (2019)
  23. Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution. Quade N, Boehringer D, Leibundgut M, van den Heuvel J, Ban N. Nat Commun 6 7646 (2015)
  24. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Thompson RF, Walker M, Siebert CA, Muench SP, Ranson NA. Methods 100 3-15 (2016)
  25. Near-atomic resolution for one state of F-actin. Galkin VE, Orlova A, Vos MR, Schröder GF, Egelman EH. Structure 23 173-182 (2015)
  26. Mitochondrial 16S rRNA Is Methylated by tRNA Methyltransferase TRMT61B in All Vertebrates. Bar-Yaacov D, Frumkin I, Yashiro Y, Chujo T, Ishigami Y, Chemla Y, Blumberg A, Schlesinger O, Bieri P, Greber B, Ban N, Zarivach R, Alfonta L, Pilpel Y, Suzuki T, Mishmar D. PLoS Biol 14 e1002557 (2016)
  27. Structures of the scanning and engaged states of the mammalian SRP-ribosome complex. Voorhees RM, Hegde RS. Elife 4 (2015)
  28. Dissecting the molecular organization of the translocon-associated protein complex. Pfeffer S, Dudek J, Schaffer M, Ng BG, Albert S, Plitzko JM, Baumeister W, Zimmermann R, Freeze HH, Engel BD, Förster F. Nat Commun 8 14516 (2017)
  29. The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum. Gamerdinger M, Hanebuth MA, Frickey T, Deuerling E. Science 348 201-207 (2015)
  30. Structure of the mammalian antimicrobial peptide Bac7(1-16) bound within the exit tunnel of a bacterial ribosome. Seefeldt AC, Graf M, Pérébaskine N, Nguyen F, Arenz S, Mardirossian M, Scocchi M, Wilson DN, Innis CA. Nucleic Acids Res 44 2429-2438 (2016)
  31. Mechanistic insights into the inhibition of Sec61-dependent co- and post-translational translocation by mycolactone. McKenna M, Simmonds RE, High S. J Cell Sci 129 1404-1415 (2016)
  32. Cotranslational stabilization of Sec62/63 within the ER Sec61 translocon is controlled by distinct substrate-driven translocation events. Conti BJ, Devaraneni PK, Yang Z, David LL, Skach WR. Mol Cell 58 269-283 (2015)
  33. Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Jomaa A, Jomaa A, Boehringer D, Leibundgut M, Ban N. Nat Commun 7 10471 (2016)
  34. Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA. Yamamoto H, Collier M, Loerke J, Ismer J, Schmidt A, Hilal T, Sprink T, Yamamoto K, Mielke T, Bürger J, Shaikh TR, Dabrowski M, Hildebrand PW, Scheerer P, Spahn CM. EMBO J 34 3042-3058 (2015)
  35. 2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy. Campbell MG, Veesler D, Cheng A, Potter CS, Carragher B. Elife 4 (2015)
  36. Structures of translationally inactive mammalian ribosomes. Brown A, Baird MR, Yip MC, Murray J, Shao S. Elife 7 e40486 (2018)
  37. Mechanisms of ribosome stalling by SecM at multiple elongation steps. Zhang J, Pan X, Yan K, Sun S, Gao N, Sui SF. Elife 4 e09684 (2015)
  38. The architecture of EMC reveals a path for membrane protein insertion. O'Donnell JP, Phillips BP, Yagita Y, Juszkiewicz S, Wagner A, Malinverni D, Keenan RJ, Miller EA, Hegde RS. Elife 9 e57887 (2020)
  39. Sec61 blockade by mycolactone inhibits antigen cross-presentation independently of endosome-to-cytosol export. Grotzke JE, Kozik P, Morel JD, Impens F, Pietrosemoli N, Cresswell P, Amigorena S, Demangel C. Proc Natl Acad Sci U S A 114 E5910-E5919 (2017)
  40. The unfolded protein response and endoplasmic reticulum protein targeting machineries converge on the stress sensor IRE1. Acosta-Alvear D, Karagöz GE, Fröhlich F, Li H, Walther TC, Walter P. Elife 7 e43036 (2018)
  41. Revising the Structural Diversity of Ribosomal Proteins Across the Three Domains of Life. Melnikov S, Manakongtreecheep K, Söll D. Mol Biol Evol 35 1588-1598 (2018)
  42. Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. Wells JN, Buschauer R, Mackens-Kiani T, Best K, Kratzat H, Berninghausen O, Becker T, Gilbert W, Cheng J, Beckmann R. PLoS Biol 18 e3000780 (2020)
  43. Structure of the posttranslational Sec protein-translocation channel complex from yeast. Itskanov S, Park E. Science 363 84-87 (2019)
  44. Decatransin, a new natural product inhibiting protein translocation at the Sec61/SecYEG translocon. Junne T, Wong J, Studer C, Aust T, Bauer BW, Beibel M, Bhullar B, Bruccoleri R, Eichenberger J, Estoppey D, Hartmann N, Knapp B, Krastel P, Melin N, Oakeley EJ, Oberer L, Riedl R, Roma G, Schuierer S, Petersen F, Tallarico JA, Rapoport TA, Spiess M, Hoepfner D. J Cell Sci 128 1217-1229 (2015)
  45. tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis. Flis J, Holm M, Rundlet EJ, Loerke J, Hilal T, Dabrowski M, Bürger J, Mielke T, Blanchard SC, Spahn CMT, Budkevich TV. Cell Rep 25 2676-2688.e7 (2018)
  46. Dengue Virus Selectively Annexes Endoplasmic Reticulum-Associated Translation Machinery as a Strategy for Co-opting Host Cell Protein Synthesis. Reid DW, Campos RK, Child JR, Zheng T, Chan KWK, Bradrick SS, Vasudevan SG, Garcia-Blanco MA, Nicchitta CV. J Virol 92 e01766-17 (2018)
  47. Seeing tobacco mosaic virus through direct electron detectors. Fromm SA, Bharat TA, Jakobi AJ, Hagen WJ, Sachse C. J Struct Biol 189 87-97 (2015)
  48. Charge-driven dynamics of nascent-chain movement through the SecYEG translocon. Ismail N, Hedman R, Lindén M, von Heijne G. Nat Struct Mol Biol 22 145-149 (2015)
  49. The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon. von der Malsburg K, Shao S, Hegde RS. Mol Biol Cell 26 2168-2180 (2015)
  50. Multifunctional roles for the protein translocation machinery in RNA anchoring to the endoplasmic reticulum. Jagannathan S, Hsu JC, Reid DW, Chen Q, Thompson WJ, Moseley AM, Nicchitta CV. J Biol Chem 289 25907-25924 (2014)
  51. Structural basis for selective stalling of human ribosome nascent chain complexes by a drug-like molecule. Li W, Ward FR, McClure KF, Chang ST, Montabana E, Liras S, Dullea RG, Cate JHD. Nat Struct Mol Biol 26 501-509 (2019)
  52. Subtomogram analysis using the Volta phase plate. Khoshouei M, Pfeffer S, Baumeister W, Förster F, Danev R. J Struct Biol 197 94-101 (2017)
  53. Cryo-EM structure of the tetracycline resistance protein TetM in complex with a translating ribosome at 3.9-Å resolution. Arenz S, Nguyen F, Beckmann R, Wilson DN. Proc Natl Acad Sci U S A 112 5401-5406 (2015)
  54. Mechanism of an intramembrane chaperone for multipass membrane proteins. Smalinskaitė L, Kim MK, Lewis AJO, Keenan RJ, Hegde RS. Nature 611 161-166 (2022)
  55. Mammalian SRP receptor switches the Sec61 translocase from Sec62 to SRP-dependent translocation. Jadhav B, McKenna M, Johnson N, High S, Sinning I, Pool MR. Nat Commun 6 10133 (2015)
  56. Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46. Taschner M, Mourão A, Awasthi M, Basquin J, Lorentzen E. J Biol Chem 292 7462-7473 (2017)
  57. Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62. Itskanov S, Kuo KM, Gumbart JC, Park E. Nat Struct Mol Biol 28 162-172 (2021)
  58. A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex. Hsieh HH, Lee JH, Chandrasekar S, Shan SO. Nat Commun 11 5840 (2020)
  59. Substrate-driven assembly of a translocon for multipass membrane proteins. Sundaram A, Yamsek M, Zhong F, Hooda Y, Hegde RS, Keenan RJ. Nature 611 167-172 (2022)
  60. An alternative pathway for membrane protein biogenesis at the endoplasmic reticulum. O'Keefe S, Zong G, Duah KB, Andrews LE, Shi WQ, High S. Commun Biol 4 828 (2021)
  61. Recurring RNA structural motifs underlie the mechanics of L1 stalk movement. Mohan S, Noller HF. Nat Commun 8 14285 (2017)
  62. Structures of the eukaryotic ribosome and its translational states in situ. Hoffmann PC, Kreysing JP, Khusainov I, Tuijtel MW, Welsch S, Beck M. Nat Commun 13 7435 (2022)
  63. Accuracy mechanism of eukaryotic ribosome translocation. Djumagulov M, Demeshkina N, Jenner L, Rozov A, Yusupov M, Yusupova G. Nature 600 543-546 (2021)
  64. Cancer-associated mutations in the ribosomal protein L5 gene dysregulate the HDM2/p53-mediated ribosome biogenesis checkpoint. Oršolić I, Bursać S, Jurada D, Drmić Hofman I, Dembić Z, Bartek J, Mihalek I, Volarević S. Oncogene 39 3443-3457 (2020)
  65. Cotranslational folding stimulates programmed ribosomal frameshifting in the alphavirus structural polyprotein. Harrington HR, Zimmer MH, Chamness LM, Nash V, Penn WD, Miller TF, Mukhopadhyay S, Schlebach JP. J Biol Chem 295 6798-6808 (2020)
  66. Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting. Ariosa A, Lee JH, Wang S, Saraogi I, Shan SO. Proc Natl Acad Sci U S A 112 E3169-78 (2015)
  67. Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide. Snapp EL, McCaul N, Quandte M, Cabartova Z, Bontjer I, Källgren C, Nilsson I, Land A, von Heijne G, Sanders RW, Braakman I. Elife 6 e26067 (2017)
  68. Analysis of the interplay of protein biogenesis factors at the ribosome exit site reveals new role for NAC. Nyathi Y, Pool MR. J Cell Biol 210 287-301 (2015)
  69. Architecture of the active post-translational Sec translocon. Weng TH, Steinchen W, Beatrix B, Berninghausen O, Becker T, Bange G, Cheng J, Beckmann R. EMBO J 40 e105643 (2021)
  70. USP16 counteracts mono-ubiquitination of RPS27a and promotes maturation of the 40S ribosomal subunit. Montellese C, van den Heuvel J, Ashiono C, Dörner K, Melnik A, Jonas S, Zemp I, Picotti P, Gillet LC, Kutay U. Elife 9 e54435 (2020)
  71. Heterogeneous translational landscape of the endoplasmic reticulum revealed by ribosome proximity labeling and transcriptome analysis. Hoffman AM, Chen Q, Zheng T, Nicchitta CV. J Biol Chem 294 8942-8958 (2019)
  72. The Jigsaw Puzzle of mRNA Translation Initiation in Eukaryotes: A Decade of Structures Unraveling the Mechanics of the Process. Hashem Y, Frank J. Annu Rev Biophys 47 125-151 (2018)
  73. The influence of frame alignment with dose compensation on the quality of single particle reconstructions. Spear JM, Noble AJ, Xie Q, Sousa DR, Chapman MS, Stagg SM. J Struct Biol 192 196-203 (2015)
  74. A common mechanism of Sec61 translocon inhibition by small molecules. Itskanov S, Wang L, Junne T, Sherriff R, Xiao L, Blanchard N, Shi WQ, Forsyth C, Hoepfner D, Spiess M, Park E. Nat Chem Biol 19 1063-1071 (2023)
  75. Proteasome 19S RP binding to the Sec61 channel plays a key role in ERAD. Kaiser ML, Römisch K. PLoS One 10 e0117260 (2015)
  76. Universal and domain-specific sequences in 23S-28S ribosomal RNA identified by computational phylogenetics. Doris SM, Smith DR, Beamesderfer JN, Raphael BJ, Nathanson JA, Gerbi SA. RNA 21 1719-1730 (2015)
  77. Protein Synthesis in the Developing Neocortex at Near-Atomic Resolution Reveals Ebp1-Mediated Neuronal Proteostasis at the 60S Tunnel Exit. Kraushar ML, Krupp F, Harnett D, Turko P, Ambrozkiewicz MC, Sprink T, Imami K, Günnigmann M, Zinnall U, Vieira-Vieira CH, Schaub T, Münster-Wandowski A, Bürger J, Borisova E, Yamamoto H, Rasin MR, Ohler U, Beule D, Mielke T, Tarabykin V, Landthaler M, Kramer G, Vida I, Selbach M, Spahn CMT. Mol Cell 81 304-322.e16 (2021)
  78. Driving Forces of Translocation Through Bacterial Translocon SecYEG. Knyazev DG, Kuttner R, Zimmermann M, Sobakinskaya E, Pohl P. J Membr Biol 251 329-343 (2018)
  79. Evolution of ribosomal protein network architectures. Timsit Y, Sergeant-Perthuis G, Bennequin D. Sci Rep 11 625 (2021)
  80. Partially inserted nascent chain unzips the lateral gate of the Sec translocon. Kater L, Frieg B, Berninghausen O, Gohlke H, Beckmann R, Kedrov A. EMBO Rep 20 e48191 (2019)
  81. Forces on Nascent Polypeptides during Membrane Insertion and Translocation via the Sec Translocon. Niesen MJM, Müller-Lucks A, Hedman R, von Heijne G, Miller TF. Biophys J 115 1885-1894 (2018)
  82. High-resolution structures of a thermophilic eukaryotic 80S ribosome reveal atomistic details of translocation. Kišonaitė M, Wild K, Lapouge K, Ruppert T, Sinning I. Nat Commun 13 476 (2022)
  83. Ribosomal protein gene RPL9 variants can differentially impair ribosome function and cellular metabolism. Lezzerini M, Penzo M, O'Donohue MF, Marques Dos Santos Vieira C, Saby M, Elfrink HL, Diets IJ, Hesse AM, Couté Y, Gastou M, Nin-Velez A, Nikkels PGJ, Olson AN, Zonneveld-Huijssoon E, Jongmans MCJ, Zhang G, van Weeghel M, Houtkooper RH, Wlodarski MW, Kuiper RP, Bierings MB, van der Werff Ten Bosch J, Leblanc T, Montanaro L, Dinman JD, Da Costa L, Gleizes PE, MacInnes AW. Nucleic Acids Res 48 770-787 (2020)
  84. Molecular mechanism of cargo recognition and handover by the mammalian signal recognition particle. Jomaa A, Jomaa A, Eitzinger S, Zhu Z, Chandrasekar S, Kobayashi K, Shan SO, Ban N. Cell Rep 36 109350 (2021)
  85. RPL26/uL24 UFMylation is essential for ribosome-associated quality control at the endoplasmic reticulum. Scavone F, Gumbin SC, Da Rosa PA, Kopito RR. Proc Natl Acad Sci U S A 120 e2220340120 (2023)
  86. Reduced expression of the mouse ribosomal protein Rpl17 alters the diversity of mature ribosomes by enhancing production of shortened 5.8S rRNA. Wang M, Parshin AV, Shcherbik N, Pestov DG. RNA 21 1240-1248 (2015)
  87. Cryo-EM structure of the highly atypical cytoplasmic ribosome of Euglena gracilis. Matzov D, Taoka M, Nobe Y, Yamauchi Y, Halfon Y, Asis N, Zimermann E, Rozenberg H, Bashan A, Bhushan S, Isobe T, Gray MW, Yonath A, Shalev-Benami M. Nucleic Acids Res 48 11750-11761 (2020)
  88. Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance. Smith PR, Loerch S, Kunder N, Stanowick AD, Lou TF, Campbell ZT. Nat Commun 12 6789 (2021)
  89. Quantitative Proteomics Links the LRRC59 Interactome to mRNA Translation on the ER Membrane. Hannigan MM, Hoffman AM, Thompson JW, Zheng T, Nicchitta CV. Mol Cell Proteomics 19 1826-1849 (2020)
  90. The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs. Acosta-Reyes F, Neupane R, Frank J, Fernández IS. EMBO J 38 e102226 (2019)
  91. Studies on the Coordination of Ribosomal Protein Assembly Events Involved in Processing and Stabilization of Yeast Early Large Ribosomal Subunit Precursors. Ohmayer U, Gil-Hernández Á, Sauert M, Martín-Marcos P, Tamame M, Tschochner H, Griesenbeck J, Milkereit P. PLoS One 10 e0143768 (2015)
  92. Ribosome-bound Get4/5 facilitates the capture of tail-anchored proteins by Sgt2 in yeast. Zhang Y, De Laurentiis E, Bohnsack KE, Wahlig M, Ranjan N, Gruseck S, Hackert P, Wölfle T, Rodnina MV, Schwappach B, Rospert S. Nat Commun 12 782 (2021)
  93. Endocytic membrane repair by ESCRT-III controls antigen export to the cytosol during antigen cross-presentation. Gros M, Segura E, Rookhuizen DC, Baudon B, Heurtebise-Chrétien S, Burgdorf N, Maurin M, Kapp EA, Simpson RJ, Kozik P, Villadangos JA, Bertrand MJM, Burbage M, Amigorena S. Cell Rep 40 111205 (2022)
  94. Near-atomic resolution reconstructions using a mid-range electron microscope operated at 200 kV. Campbell MG, Kearney BM, Cheng A, Potter CS, Johnson JE, Carragher B, Veesler D. J Struct Biol 188 183-187 (2014)
  95. SAYSD1 senses UFMylated ribosome to safeguard co-translational protein translocation at the endoplasmic reticulum. Wang L, Xu Y, Yun S, Yuan Q, Satpute-Krishnan P, Ye Y. Cell Rep 42 112028 (2023)
  96. Coordination of -1 programmed ribosomal frameshifting by transcript and nascent chain features revealed by deep mutational scanning. Carmody PJ, Zimmer MH, Kuntz CP, Harrington HR, Duckworth KE, Penn WD, Mukhopadhyay S, Miller TF, Schlebach JP. Nucleic Acids Res 49 12943-12954 (2021)
  97. Glycosylation limits forward trafficking of the tetraspan membrane protein PMP22. Marinko JT, Wright MT, Schlebach JP, Clowes KR, Heintzman DR, Plate L, Sanders CR. J Biol Chem 296 100719 (2021)
  98. TRAM1 protein may support ER protein import by modulating the phospholipid bilayer near the lateral gate of the Sec61-channel. Klein MC, Lerner M, Nguyen D, Pfeffer S, Dudek J, Förster F, Helms V, Lang S, Zimmermann R. Channels (Austin) 14 28-44 (2020)
  99. Lateral gate dynamics of the bacterial translocon during cotranslational membrane protein insertion. Mercier E, Wang X, Maiti M, Wintermeyer W, Rodnina MV. Proc Natl Acad Sci U S A 118 e2100474118 (2021)
  100. Quantitative Proteomics and Differential Protein Abundance Analysis after Depletion of Putative mRNA Receptors in the ER Membrane of Human Cells Identifies Novel Aspects of mRNA Targeting to the ER. Bhadra P, Schorr S, Lerner M, Nguyen D, Dudek J, Förster F, Helms V, Lang S, Zimmermann R. Molecules 26 3591 (2021)
  101. Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel. Tu L, Deutsch C. J Mol Biol 429 1722-1732 (2017)
  102. Dynamic association of human Ebp1 with the ribosome. Bhaskar V, Desogus J, Graff-Meyer A, Schenk AD, Cavadini S, Chao JA. RNA 27 411-419 (2021)
  103. Recognition of discrete export signals in early flagellar subunits during bacterial type III secretion. Bryant OJ, Dhillon P, Hughes C, Fraser GM. Elife 11 e66264 (2022)
  104. Molecular basis of the TRAP complex function in ER protein biogenesis. Jaskolowski M, Jomaa A, Gamerdinger M, Shrestha S, Leibundgut M, Deuerling E, Ban N. Nat Struct Mol Biol 30 770-777 (2023)
  105. Reduced DNAJC3 Expression Affects Protein Translocation across the ER Membrane and Attenuates the Down-Modulating Effect of the Translocation Inhibitor Cyclotriazadisulfonamide. Pauwels E, Provinciael B, Camps A, Hartmann E, Vermeire K. Int J Mol Sci 23 584 (2022)
  106. Voltage Sensing in Bacterial Protein Translocation. Knyazev DG, Kuttner R, Bondar AN, Zimmerman M, Siligan C, Pohl P. Biomolecules 10 E78 (2020)
  107. Alteration of Membrane Physicochemical Properties by Two Factors for Membrane Protein Integration. Nomura K, Yamaguchi T, Mori S, Fujikawa K, Nishiyama KI, Shimanouchi T, Tanimoto Y, Morigaki K, Shimamoto K. Biophys J 117 99-110 (2019)
  108. C-terminal tail length guides insertion and assembly of membrane proteins. Sun S, Mariappan M. J Biol Chem 295 15498-15510 (2020)
  109. Conformational dynamics of bacterial and human cytoplasmic models of the ribosomal A-site. Panecka J, Šponer J, Trylska J. Biochimie 112 96-110 (2015)
  110. Efficient integration of transmembrane domains depends on the folding properties of the upstream sequences. Janoschke M, Zimmermann M, Brunauer A, Humbel R, Junne T, Spiess M. Proc Natl Acad Sci U S A 118 e2102675118 (2021)
  111. Mechanism of signal-anchor triage during early steps of membrane protein insertion. Wu H, Hegde RS. Mol Cell 83 961-973.e7 (2023)
  112. Molecular view of ER membrane remodeling by the Sec61/TRAP translocon. Karki S, Javanainen M, Rehan S, Tranter D, Kellosalo J, Huiskonen JT, Happonen L, Paavilainen V. EMBO Rep 24 e57910 (2023)
  113. SecY-SecA fusion protein retains the ability to mediate protein transport. Sugano Y, Furukawa A, Nureki O, Tanaka Y, Tsukazaki T. PLoS One 12 e0183434 (2017)
  114. Stability and flexibility of marginally hydrophobic-segment stalling at the endoplasmic reticulum translocon. Kida Y, Ishihara Y, Fujita H, Onishi Y, Sakaguchi M. Mol Biol Cell 27 930-940 (2016)
  115. Structure of the actively translating plant 80S ribosome at 2.2 Å resolution. Smirnova J, Loerke J, Kleinau G, Schmidt A, Bürger J, Meyer EH, Mielke T, Scheerer P, Bock R, Spahn CMT, Zoschke R. Nat Plants 9 987-1000 (2023)
  116. A selectivity filter in the ER membrane protein complex limits protein misinsertion at the ER. Pleiner T, Hazu M, Pinton Tomaleri G, Nguyen VN, Januszyk K, Voorhees RM. J Cell Biol 222 e202212007 (2023)
  117. Conserved motifs on the cytoplasmic face of the protein translocation channel are critical for the transition between resting and active conformations. Mandon EC, Butova C, Lachapelle A, Gilmore R. J Biol Chem 293 13662-13672 (2018)
  118. CryoDRGN-ET: deep reconstructing generative networks for visualizing dynamic biomolecules inside cells. Rangan R, Feathers R, Khavnekar S, Lerer A, Johnston JD, Kelley R, Obr M, Kotecha A, Zhong ED. Nat Methods 21 1537-1545 (2024)
  119. CryoEM reveals that ribosomes in microsporidian spores are locked in a dimeric hibernating state. McLaren M, Conners R, Isupov MN, Gil-Díez P, Gambelli L, Gold VAM, Walter A, Connell SR, Williams B, Daum B. Nat Microbiol 8 1834-1845 (2023)
  120. Degradation of integral membrane proteins modified with the photosensitive degron module requires the cytosolic endoplasmic reticulum-associated degradation pathway. Scheffer J, Hasenjäger S, Taxis C. Mol Biol Cell 30 2558-2570 (2019)
  121. Heterologous Inferential Analysis (HIA) and Other Emerging Concepts: In Understanding Mitochondrial Variation In Pathogenesis: There is no More Low-Hanging Fruit. Vila-Sanjurjo A, Smith PM, Elson JL. Methods Mol Biol 2277 203-245 (2021)
  122. Hyper-swivel head domain motions are required for complete mRNA-tRNA translocation and ribosome resetting. Nishima W, Girodat D, Holm M, Rundlet EJ, Alejo JL, Fischer K, Blanchard SC, Sanbonmatsu KY. Nucleic Acids Res 50 8302-8320 (2022)
  123. The Ribosome-Sec61 Translocon Complex Forms a Cytosolically Restricted Environment for Early Polytopic Membrane Protein Folding. Patterson MA, Bandyopadhyay A, Devaraneni PK, Woodward J, Rooney L, Yang Z, Skach WR. J Biol Chem 290 28944-28952 (2015)
  124. A molecular dynamics study on the resilience of Sec61 channel from open to closed state. Sun S, Wang S, Tong Z, Yao X, Gao J. RSC Adv 9 14876-14883 (2019)
  125. Peptide Folding in Translocon-Like Pores. Ulmschneider MB, Koehler Leman J, Fennell H, Beckstein O. J Membr Biol 248 407-417 (2015)
  126. Proteomics Identifies Substrates and a Novel Component in hSnd2-Dependent ER Protein Targeting. Tirincsi A, O'Keefe S, Nguyen D, Sicking M, Dudek J, Förster F, Jung M, Hadzibeganovic D, Helms V, High S, Zimmermann R, Lang S. Cells 11 2925 (2022)
  127. The conserved C-terminus of Sss1p is required to maintain the endoplasmic reticulum permeability barrier. Witham CM, Dassanayake HG, Paxman AL, Stevens KLP, Baklous L, White PF, Black AL, Steuart RFL, Stirling CJ, Schulz BL, Mousley CJ. J Biol Chem 295 2125-2134 (2020)
  128. Insights into translocation mechanism and ribosome evolution from cryo-EM structures of translocation intermediates of Giardia intestinalis. Majumdar S, Emmerich A, Krakovka S, Mandava CS, Svärd SG, Sanyal S. Nucleic Acids Res 51 3436-3451 (2023)
  129. Interaction mapping of the Sec61 translocon identifies two Sec61α regions interacting with hydrophobic segments in translocating chains. Kida Y, Sakaguchi M. J Biol Chem 293 17050-17060 (2018)
  130. SEC61G Promotes Cervical Cancer Proliferation by Activating MAPK Signaling Pathway. Fan Y, Wang Y, Liu F, Wang H, Li Q. Dis Markers 2022 7016079 (2022)
  131. Sec61: A static framework for membrane-protein insertion. Pfeffer S, Förster F. Channels (Austin) 10 167-169 (2016)
  132. Structural basis of SecA-mediated protein translocation. Dong L, Yang S, Chen J, Wu X, Sun D, Song C, Li L. Proc Natl Acad Sci U S A 120 e2208070120 (2023)
  133. Hydrophobicity, rather than secondary structure, is essential for the SRP dependent targeting of GPR35 to the ER membrane. Cherry JK, Woolhead CA. J Bioenerg Biomembr 51 137-150 (2019)
  134. Protein Translocation Acquires Substrate Selectivity Through ER Stress-Induced Reassembly of Translocon Auxiliary Components. Lee S, Shin Y, Kim K, Song Y, Kim Y, Kang SW. Cells 9 E518 (2020)
  135. Rapid inactivation of the yeast Sec complex selectively blocks transport of post-translationally translocated proteins. Yi JK, Fujita H, Mandon EC, Gilmore R. J Biol Chem 297 101171 (2021)
  136. Structural insights into the role of GTPBP10 in the RNA maturation of the mitoribosome. Nguyen TG, Ritter C, Kummer E. Nat Commun 14 7991 (2023)
  137. Validation methods for low-resolution fitting of atomic structures to electron microscopy data. Xu XP, Volkmann N. Arch Biochem Biophys 581 49-53 (2015)
  138. Characterization of the interaction between the Sec61 translocon complex and ppαF using optical tweezers. Robeson L, Casanova-Morales N, Burgos-Bravo F, Alfaro-Valdés HM, Lesch R, Ramírez-Álvarez C, Valdivia-Delgado M, Vega M, Matute RA, Schekman R, Wilson CAM. Protein Sci 33 e4996 (2024)
  139. Dynamics ante portas. Smit JH, Roussel G, Economou A. Proc Natl Acad Sci U S A 118 e2110553118 (2021)
  140. Molten globules lure transmembrane helices away from the membrane. von Heijne G. Proc Natl Acad Sci U S A 118 e2112899118 (2021)
  141. Multi-protein assemblies orchestrate co-translational enzymatic processing on the human ribosome. Klein M, Wild K, Sinning I. Nat Commun 15 7681 (2024)
  142. Predicting the Assembly of the Transmembrane Domains of Viral Channel Forming Proteins and Peptide Drug Screening Using a Docking Approach. Huang TC, Fischer WB. Biomolecules 12 1844 (2022)
  143. RAMPing up knowledge of the translocon. Vismpas D, Förster F. Elife 13 e98548 (2024)
  144. Structural analysis of the dynamic ribosome-translocon complex. Lewis AJO, Zhong F, Keenan RJ, Hegde RS. Elife 13 RP95814 (2024)
  145. Synthesis, Biological Evaluation and Docking Studies of Ring-Opened Analogues of Ipomoeassin F. O'Keefe S, Bhadra P, Duah KB, Zong G, Tenay L, Andrews L, Schneider H, Anderson A, Hu Z, Aljewari HS, Hall BS, Simmonds RE, Helms V, High S, Shi WQ. Molecules 27 4419 (2022)
  146. The flexible N-terminal motif of uL11 unique to eukaryotic ribosomes interacts with P-complex and facilitates protein translation. Yang L, Lee KM, Yu CW, Imai H, Choi AK, Banfield DK, Ito K, Uchiumi T, Wong KB. Nucleic Acids Res 50 5335-5348 (2022)