3mo5 Citations

Adding a lysine mimic in the design of potent inhibitors of histone lysine methyltransferases.

J Mol Biol 400 1-7 (2010)
Related entries: 3mo0, 3mo2

Cited: 64 times
EuropePMC logo PMID: 20434463

Abstract

Dynamic histone lysine methylation involves the activities of modifying enzymes (writers), enzymes removing modifications (erasers), and readers of the histone code. One common feature of these activities is the recognition of lysines in methylated and unmethylated states, whether they are substrates, reaction products, or binding partners. We applied the concept of adding a lysine mimic to an established inhibitor (BIX-01294) of histone H3 lysine 9 methyltransferases G9a and G9a-like protein by including a 5-aminopentyloxy moiety, which is inserted into the target lysine-binding channel and becomes methylated by G9a-like protein, albeit slowly. The compound enhances its potency in vitro and reduces cell toxicity in vivo. We suggest that adding a lysine or methyl-lysine mimic should be considered in the design of small-molecule inhibitors for other methyl-lysine writers, erasers, and readers.

Reviews - 3mo5 mentioned but not cited (2)

  1. Targeting protein lysine methylation and demethylation in cancers. He Y, Korboukh I, Jin J, Huang J. Acta Biochim Biophys Sin (Shanghai) 44 70-79 (2012)
  2. Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Andreoli F, Barbosa AJ, Parenti MD, Del Rio A. Curr Pharm Des 19 578-613 (2013)

Articles - 3mo5 mentioned but not cited (4)

  1. Predicting new indications for approved drugs using a proteochemometric method. Dakshanamurthy S, Issa NT, Assefnia S, Seshasayee A, Peters OJ, Madhavan S, Uren A, Brown ML, Byers SW. J Med Chem 55 6832-6848 (2012)
  2. Targets in epigenetics: inhibiting the methyl writers of the histone code. Yost JM, Korboukh I, Liu F, Gao C, Jin J. Curr Chem Genomics 5 72-84 (2011)
  3. Discovery of Potent and Selective Inhibitors for G9a-Like Protein (GLP) Lysine Methyltransferase. Xiong Y, Li F, Babault N, Dong A, Zeng H, Wu H, Chen X, Arrowsmith CH, Brown PJ, Liu J, Vedadi M, Jin J. J Med Chem 60 1876-1891 (2017)
  4. Deep Neural Network Classifier for Virtual Screening Inhibitors of (S)-Adenosyl-L-Methionine (SAM)-Dependent Methyltransferase Family. Li F, Wan X, Xing J, Tan X, Li X, Wang Y, Zhao J, Wu X, Liu X, Li Z, Luo X, Lu W, Zheng M. Front Chem 7 324 (2019)


Reviews citing this publication (24)

  1. Epigenetic protein families: a new frontier for drug discovery. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Nat Rev Drug Discov 11 384-400 (2012)
  2. H3K9 methyltransferase G9a and the related molecule GLP. Shinkai Y, Tachibana M. Genes Dev 25 781-788 (2011)
  3. Histone lysine methylation and demethylation pathways in cancer. Varier RA, Timmers HT. Biochim Biophys Acta 1815 75-89 (2011)
  4. Use of epigenetic drugs in disease: an overview. Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S, Sarkar S. Genet Epigenet 6 9-19 (2014)
  5. Targeting histone lysine methylation in cancer. McGrath J, Trojer P. Pharmacol Ther 150 1-22 (2015)
  6. Inhibitors of Protein Methyltransferases and Demethylases. Kaniskan HÜ, Martini ML, Jin J. Chem Rev 118 989-1068 (2018)
  7. G9a, a multipotent regulator of gene expression. Shankar SR, Bahirvani AG, Rao VK, Bharathy N, Ow JR, Taneja R. Epigenetics 8 16-22 (2013)
  8. Epigenomics and interindividual differences in drug response. Ivanov M, Kacevska M, Ingelman-Sundberg M. Clin Pharmacol Ther 92 727-736 (2012)
  9. Epigenomics of leukemia: from mechanisms to therapeutic applications. Florean C, Schnekenburger M, Grandjenette C, Dicato M, Diederich M. Epigenomics 3 581-609 (2011)
  10. Structure and function of histone H3 lysine 9 methyltransferases and demethylases. Krishnan S, Horowitz S, Trievel RC. Chembiochem 12 254-263 (2011)
  11. The Lysine Methyltransferase G9a in Immune Cell Differentiation and Function. Scheer S, Zaph C. Front Immunol 8 429 (2017)
  12. Epigenetic targets and drug discovery: part 1: histone methylation. Liu Y, Liu K, Qin S, Xu C, Min J. Pharmacol Ther 143 275-294 (2014)
  13. Epigenetics: A primer for clinicians. Paluch BE, Naqash AR, Brumberger Z, Nemeth MJ, Griffiths EA. Blood Rev 30 285-295 (2016)
  14. Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases. Niwa H, Umehara T. Epigenetics 12 340-352 (2017)
  15. Small-molecular modulators of cancer-associated epigenetic mechanisms. Itoh Y, Suzuki T, Miyata N. Mol Biosyst 9 873-896 (2013)
  16. Small molecule epigenetic inhibitors targeted to histone lysine methyltransferases and demethylases. Wang Z, Patel DJ. Q Rev Biophys 46 349-373 (2013)
  17. Writing and rewriting the epigenetic code of cancer cells: from engineered proteins to small molecules. Blancafort P, Jin J, Frye S. Mol Pharmacol 83 563-576 (2013)
  18. Tackling malignant melanoma epigenetically: histone lysine methylation. Orouji E, Utikal J. Clin Epigenetics 10 145 (2018)
  19. Methyltransferase Inhibitors: Competing with, or Exploiting the Bound Cofactor. Ferreira de Freitas R, Ivanochko D, Schapira M. Molecules 24 E4492 (2019)
  20. Synthesis of lysine methyltransferase inhibitors. Hui C, Ye T. Front Chem 3 44 (2015)
  21. Control of Breast Cancer Pathogenesis by Histone Methylation and the Hairless Histone Demethylase. Trager MH, Sah B, Chen Z, Liu L. Endocrinology 162 bqab088 (2021)
  22. Lysine methyltransferase inhibitors: where we are now. Feoli A, Viviano M, Cipriano A, Milite C, Castellano S, Sbardella G. RSC Chem Biol 3 359-406 (2022)
  23. LSD1 inhibitors for cancer treatment: Focus on multi-target agents and compounds in clinical trials. Noce B, Di Bello E, Fioravanti R, Mai A. Front Pharmacol 14 1120911 (2023)
  24. Role of dopamine in the pathophysiology of Parkinson's disease. Zhou ZD, Yi LX, Wang DQ, Lim TM, Tan EK. Transl Neurodegener 12 44 (2023)

Articles citing this publication (34)

  1. A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Vedadi M, Barsyte-Lovejoy D, Liu F, Rival-Gervier S, Allali-Hassani A, Labrie V, Labrie V, Wigle TJ, Dimaggio PA, Wasney GA, Siarheyeva A, Dong A, Tempel W, Wang SC, Chen X, Chau I, Mangano TJ, Huang XP, Simpson CD, Pattenden SG, Norris JL, Kireev DB, Tripathy A, Edwards A, Roth BL, Janzen WP, Garcia BA, Petronis A, Ellis J, Brown PJ, Frye SV, Arrowsmith CH, Jin J. Nat Chem Biol 7 566-574 (2011)
  2. An orally bioavailable chemical probe of the Lysine Methyltransferases EZH2 and EZH1. Konze KD, Ma A, Li F, Barsyte-Lovejoy D, Parton T, Macnevin CJ, Liu F, Gao C, Huang XP, Kuznetsova E, Rougie M, Jiang A, Pattenden SG, Norris JL, James LI, Roth BL, Brown PJ, Frye SV, Arrowsmith CH, Hahn KM, Wang GG, Vedadi M, Jin J. ACS Chem Biol 8 1324-1334 (2013)
  3. Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP. Liu F, Barsyte-Lovejoy D, Li F, Xiong Y, Korboukh V, Huang XP, Allali-Hassani A, Janzen WP, Roth BL, Frye SV, Arrowsmith CH, Brown PJ, Vedadi M, Jin J. J Med Chem 56 8931-8942 (2013)
  4. Optimization of cellular activity of G9a inhibitors 7-aminoalkoxy-quinazolines. Liu F, Barsyte-Lovejoy D, Allali-Hassani A, He Y, Herold JM, Chen X, Yates CM, Frye SV, Brown PJ, Huang J, Vedadi M, Arrowsmith CH, Jin J. J Med Chem 54 6139-6150 (2011)
  5. Selective inhibitors of protein methyltransferases. Kaniskan HÜ, Konze KD, Jin J. J Med Chem 58 1596-1629 (2015)
  6. Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum. Malmquist NA, Moss TA, Mecheri S, Scherf A, Fuchter MJ. Proc Natl Acad Sci U S A 109 16708-16713 (2012)
  7. Structural Chemistry of Human SET Domain Protein Methyltransferases. Schapira M. Curr Chem Genomics 5 85-94 (2011)
  8. Structural and biochemical studies of human lysine methyltransferase Smyd3 reveal the important functional roles of its post-SET and TPR domains and the regulation of its activity by DNA binding. Xu S, Wu J, Sun B, Zhong C, Ding J. Nucleic Acids Res 39 4438-4449 (2011)
  9. Discovery of a selective, substrate-competitive inhibitor of the lysine methyltransferase SETD8. Ma A, Yu W, Li F, Bleich RM, Herold JM, Butler KV, Norris JL, Korboukh V, Tripathy A, Janzen WP, Arrowsmith CH, Frye SV, Vedadi M, Brown PJ, Jin J. J Med Chem 57 6822-6833 (2014)
  10. Exploiting an allosteric binding site of PRMT3 yields potent and selective inhibitors. Liu F, Li F, Ma A, Dobrovetsky E, Dong A, Gao C, Korboukh I, Liu J, Smil D, Brown PJ, Frye SV, Arrowsmith CH, Schapira M, Vedadi M, Jin J. J Med Chem 56 2110-2124 (2013)
  11. An analog of BIX-01294 selectively inhibits a family of histone H3 lysine 9 Jumonji demethylases. Upadhyay AK, Rotili D, Han JW, Hu R, Chang Y, Labella D, Zhang X, Yoon YS, Mai A, Cheng X. J Mol Biol 416 319-327 (2012)
  12. Dual EZH2 and EHMT2 histone methyltransferase inhibition increases biological efficacy in breast cancer cells. Curry E, Green I, Chapman-Rothe N, Shamsaei E, Kandil S, Cherblanc FL, Payne L, Bell E, Ganesh T, Srimongkolpithak N, Caron J, Li F, Uren AG, Snyder JP, Vedadi M, Fuchter MJ, Brown R. Clin Epigenetics 7 84 (2015)
  13. A fluorescence-based supramolecular tandem assay for monitoring lysine methyltransferase activity in homogeneous solution. Florea M, Kudithipudi S, Rei A, González-Álvarez MJ, Jeltsch A, Nau WM. Chemistry 18 3521-3528 (2012)
  14. Regulation of USP37 Expression by REST-Associated G9a-Dependent Histone Methylation. Dobson THW, Hatcher RJ, Swaminathan J, Das CM, Shaik S, Tao RH, Milite C, Castellano S, Taylor PH, Sbardella G, Gopalakrishnan V. Mol Cancer Res 15 1073-1084 (2017)
  15. N+-C-H···O Hydrogen bonds in protein-ligand complexes. Itoh Y, Nakashima Y, Tsukamoto S, Kurohara T, Suzuki M, Sakae Y, Oda M, Okamoto Y, Suzuki T. Sci Rep 9 767 (2019)
  16. Analogues of the Natural Product Sinefungin as Inhibitors of EHMT1 and EHMT2. Devkota K, Lohse B, Liu Q, Wang MW, Stærk D, Berthelsen J, Clausen RP. ACS Med Chem Lett 5 293-297 (2014)
  17. Discovery of a Novel Chemotype of Histone Lysine Methyltransferase EHMT1/2 (GLP/G9a) Inhibitors: Rational Design, Synthesis, Biological Evaluation, and Co-crystal Structure. Milite C, Feoli A, Horton JR, Rescigno D, Cipriano A, Pisapia V, Viviano M, Pepe G, Amendola G, Novellino E, Cosconati S, Cheng X, Castellano S, Sbardella G. J Med Chem 62 2666-2689 (2019)
  18. Polymyxins and quinazolines are LSD1/KDM1A inhibitors with unusual structural features. Speranzini V, Rotili D, Ciossani G, Pilotto S, Marrocco B, Forgione M, Lucidi A, Forneris F, Mehdipour P, Velankar S, Mai A, Mattevi A. Sci Adv 2 e1601017 (2016)
  19. Properly substituted analogues of BIX-01294 lose inhibition of G9a histone methyltransferase and gain selective anti-DNA methyltransferase 3A activity. Rotili D, Tarantino D, Marrocco B, Gros C, Masson V, Poughon V, Ausseil F, Chang Y, Labella D, Cosconati S, Di Maro S, Novellino E, Schnekenburger M, Grandjenette C, Bouvy C, Diederich M, Cheng X, Arimondo PB, Mai A. PLoS One 9 e96941 (2014)
  20. Structure-activity relationship studies of SETD8 inhibitors. Ma A, Yu W, Xiong Y, Butler KV, Brown PJ, Jin J. Medchemcomm 5 1892-1898 (2014)
  21. Exploration of cyanine compounds as selective inhibitors of protein arginine methyltransferases: synthesis and biological evaluation. Hu H, Owens EA, Su H, Yan L, Levitz A, Zhao X, Henary M, Zheng YG. J Med Chem 58 1228-1243 (2015)
  22. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells. Sharma S, Gerke DS, Han HF, Jeong S, Stallcup MR, Jones PA, Liang G. Epigenetics Chromatin 5 3 (2012)
  23. Development of diaminoquinazoline histone lysine methyltransferase inhibitors as potent blood-stage antimalarial compounds. Sundriyal S, Malmquist NA, Caron J, Blundell S, Liu F, Chen X, Srimongkolpithak N, Jin J, Charman SA, Scherf A, Fuchter MJ. ChemMedChem 9 2360-2373 (2014)
  24. Dynamic behavior of the post-SET loop region of NSD1: Implications for histone binding and drug development. Graham SE, Tweedy SE, Carlson HA. Protein Sci 25 1021-1029 (2016)
  25. Identification of 2,4-diamino-6,7-dimethoxyquinoline derivatives as G9a inhibitors†Electronic supplementary information (ESI) available. See DOI: 10.1039/c4md00274a. Srimongkolpithak N, Sundriyal S, Li F, Vedadi M, Fuchter MJ. Medchemcomm 5 1821-1828 (2014)
  26. Methods for Activity Analysis of the Proteins that Regulate Histone Methylation. Quinn AM, Simeonov A. Curr Chem Genomics 5 95-105 (2011)
  27. Structure-activity relationship studies of G9a-like protein (GLP) inhibitors. Xiong Y, Li F, Babault N, Wu H, Dong A, Zeng H, Chen X, Arrowsmith CH, Brown PJ, Liu J, Vedadi M, Jin J. Bioorg Med Chem 25 4414-4423 (2017)
  28. An inhibitor screen identifies histone-modifying enzymes as mediators of polymer-mediated transgene expression from plasmid DNA. Christensen MD, Nitiyanandan R, Meraji S, Daer R, Godeshala S, Goklany S, Haynes K, Rege K. J Control Release 286 210-223 (2018)
  29. In silico probing and biological evaluation of SETDB1/ESET-targeted novel compounds that reduce tri-methylated histone H3K9 (H3K9me3) level. Park I, Hwang YJ, Kim T, Viswanath ANI, Londhe AM, Jung SY, Sim KM, Min SJ, Lee JE, Seong J, Kim YK, No KT, Ryu H, Pae AN. J Comput Aided Mol Des 31 877-889 (2017)
  30. Everybody's welcome: The big tent approach to epigenetic drug discovery. Green EM, Gozani O. Drug Discov Today Ther Strateg 9 e75-e81 (2012)
  31. Histone mimics: digging down under. Lin Y, Zhou BP. Front Biol (Beijing) 8 228-233 (2013)
  32. Discovery of the First-in-Class G9a/GLP Covalent Inhibitors. Park KS, Xiong Y, Yim H, Velez J, Babault N, Kumar P, Liu J, Jin J. J Med Chem 65 10506-10522 (2022)
  33. Mimicking H3 Substrate Arginine in the Design of G9a Lysine Methyltransferase Inhibitors for Cancer Therapy: A Computational Study for Structure-Based Drug Design. Chandar Charles MR, Li MC, Hsieh HP, Coumar MS. ACS Omega 6 6100-6111 (2021)
  34. Structure-Based Virtual Screening and in vitro and in vivo Analyses Revealed Potent Methyltransferase G9a Inhibitors as Prospective Anti-Alzheimer's Agents. Bellver-Sanchis A, Singh Choudhary B, Companys-Alemany J, Sukanya, Ávila-López PA, Martínez Rodríguez AL, Brea Floriani JM, Malik R, Pallàs M, Pérez B, Griñán-Ferré C. ChemMedChem 17 e202200002 (2022)