4lk1 Citations

Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1.

Proc Natl Acad Sci U S A 110 19772-7 (2013)
Related entries: 4ljz, 4lk0, 4llg

Cited: 105 times
EuropePMC logo PMID: 24218560

Abstract

Bacteriophage T7 encodes an essential inhibitor of the Escherichia coli host RNA polymerase (RNAP), the product of gene 2 (Gp2). We determined a series of X-ray crystal structures of E. coli RNAP holoenzyme with or without Gp2. The results define the structure and location of the RNAP σ(70) subunit domain 1.1(σ(1.1)(70)) inside the RNAP active site channel, where it must be displaced by the DNA upon formation of the open promoter complex. The structures and associated data, combined with previous results, allow for a complete delineation of the mechanism for Gp2 inhibition of E. coli RNAP. In the primary inhibition mechanism, Gp2 forms a protein-protein interaction with σ(1.1)(70), preventing the normal egress of σ(1.1)(70) from the RNAP active site channel. Gp2 thus misappropriates a domain of the RNAP holoenzyme, σ(1.1)(70), to inhibit the function of the enzyme.

Reviews - 4lk1 mentioned but not cited (2)

  1. Initial events in bacterial transcription initiation. Ruff EF, Record MT, Artsimovitch I. Biomolecules 5 1035-1062 (2015)
  2. Diverse and unified mechanisms of transcription initiation in bacteria. Chen J, Boyaci H, Campbell EA. Nat Rev Microbiol 19 95-109 (2021)

Articles - 4lk1 mentioned but not cited (17)

  1. Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1. Bae B, Davis E, Brown D, Campbell EA, Wigneshweraraj S, Darst SA. Proc Natl Acad Sci U S A 110 19772-19777 (2013)
  2. Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Braffman NR, Piscotta FJ, Hauver J, Campbell EA, Link AJ, Darst SA. Proc Natl Acad Sci U S A 116 1273-1278 (2019)
  3. E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation. Chen J, Gopalkrishnan S, Chiu C, Chen AY, Campbell EA, Gourse RL, Ross W, Darst SA. Elife 8 e49375 (2019)
  4. 6S RNA Mimics B-Form DNA to Regulate Escherichia coli RNA Polymerase. Chen J, Wassarman KM, Feng S, Leon K, Feklistov A, Winkelman JT, Li Z, Walz T, Campbell EA, Darst SA. Mol Cell 68 388-397.e6 (2017)
  5. DksA regulates RNA polymerase in Escherichia coli through a network of interactions in the secondary channel that includes Sequence Insertion 1. Parshin A, Shiver AL, Lee J, Ozerova M, Schneidman-Duhovny D, Gross CA, Borukhov S. Proc Natl Acad Sci U S A 112 E6862-71 (2015)
  6. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures. Hubin EA, Lilic M, Darst SA, Campbell EA. Nat Commun 8 16072 (2017)
  7. E. coli RNA Polymerase Determinants of Open Complex Lifetime and Structure. Ruff EF, Drennan AC, Capp MW, Poulos MA, Artsimovitch I, Record MT. J Mol Biol 427 2435-2450 (2015)
  8. The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp. Duchi D, Mazumder A, Malinen AM, Ebright RH, Kapanidis AN. Nucleic Acids Res 46 7284-7295 (2018)
  9. Structural Basis of Transcription Inhibition by CBR Hydroxamidines and CBR Pyrazoles. Feng Y, Degen D, Wang X, Gigliotti M, Liu S, Zhang Y, Das D, Michalchuk T, Ebright YW, Talaue M, Connell N, Ebright RH. Structure 23 1470-1481 (2015)
  10. In-Culture Cross-Linking of Bacterial Cells Reveals Large-Scale Dynamic Protein-Protein Interactions at the Peptide Level. de Jong L, de Koning EA, Roseboom W, Buncherd H, Wanner MJ, Dapic I, Jansen PJ, van Maarseveen JH, Corthals GL, Lewis PJ, Hamoen LW, de Koster CG. J Proteome Res 16 2457-2471 (2017)
  11. Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile. Cao X, Boyaci H, Chen J, Bao Y, Landick R, Campbell EA. Nature 604 541-545 (2022)
  12. Structure, Dynamics and Cellular Insight Into Novel Substrates of the Legionella pneumophila Type II Secretion System. Portlock TJ, Tyson JY, Dantu SC, Rehman S, White RC, McIntire IE, Sewell L, Richardson K, Shaw R, Pandini A, Cianciotto NP, Garnett JA. Front Mol Biosci 7 112 (2020)
  13. Solution structure of domain 1.1 of the σA factor from Bacillus subtilis is preformed for binding to the RNA polymerase core. Zachrdla M, Padrta P, Rabatinová A, Šanderová H, Barvík I, Krásný L, Žídek L. J Biol Chem 292 11610-11617 (2017)
  14. Evaluation of Bacterial RNA Polymerase Inhibitors in a Staphylococcus aureus-Based Wound Infection Model in SKH1 Mice. Haupenthal J, Kautz Y, Elgaher WAM, Pätzold L, Röhrig T, Laschke MW, Tschernig T, Hirsch AKH, Molodtsov V, Murakami KS, Hartmann RW, Bischoff M. ACS Infect Dis 6 2573-2581 (2020)
  15. Recognition of Streptococcal Promoters by the Pneumococcal SigA Protein. Solano-Collado V, Ruiz-Cruz S, Lorenzo-Díaz F, Pluta R, Espinosa M, Bravo A. Front Mol Biosci 8 666504 (2021)
  16. Rewiring of growth-dependent transcription regulation by a point mutation in region 1.1 of the housekeeping σ factor. Pletnev P, Pupov D, Pshanichnaya L, Esyunina D, Petushkov I, Nesterchuk M, Osterman I, Rubtsova M, Mardanov A, Ravin N, Sergiev P, Kulbachinskiy A, Dontsova O. Nucleic Acids Res 48 10802-10819 (2020)
  17. In Silico Subtractive Proteomics and Molecular Docking Approaches for the Identification of Novel Inhibitors against Streptococcus pneumoniae Strain D39. Shami A, Alharbi NK, Al-Saeed FA, Alsaegh AA, Al Syaad KM, Abd El-Rahim IHA, Mostafa YS, Ahmed AE. Life (Basel) 13 1128 (2023)


Reviews citing this publication (23)

  1. Bacterial sigma factors: a historical, structural, and genomic perspective. Feklístov A, Sharon BD, Darst SA, Gross CA. Annu Rev Microbiol 68 357-376 (2014)
  2. Local and global regulation of transcription initiation in bacteria. Browning DF, Busby SJ. Nat Rev Microbiol 14 638-650 (2016)
  3. Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and Distribution. Paget MS. Biomolecules 5 1245-1265 (2015)
  4. Assessing and maximizing data quality in macromolecular crystallography. Karplus PA, Diederichs K. Curr Opin Struct Biol 34 60-68 (2015)
  5. Structural biology of bacterial RNA polymerase. Murakami KS. Biomolecules 5 848-864 (2015)
  6. Mechanisms of Transcriptional Pausing in Bacteria. Kang JY, Mishanina TV, Landick R, Darst SA. J Mol Biol 431 4007-4029 (2019)
  7. Recent Advances in Understanding σ70-Dependent Transcription Initiation Mechanisms. Mazumder A, Kapanidis AN. J Mol Biol 431 3947-3959 (2019)
  8. Bacterial RNA Polymerase-DNA Interaction-The Driving Force of Gene Expression and the Target for Drug Action. Lee J, Borukhov S. Front Mol Biosci 3 73 (2016)
  9. Small things considered: the small accessory subunits of RNA polymerase in Gram-positive bacteria. Weiss A, Shaw LN. FEMS Microbiol Rev 39 541-554 (2015)
  10. Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages. Kim BO, Kim ES, Yoo YJ, Bae HW, Chung IY, Cho YH. Viruses 11 E268 (2019)
  11. Structural and biochemical investigation of bacteriophage N4-encoded RNA polymerases. Lenneman BR, Rothman-Denes LB. Biomolecules 5 647-667 (2015)
  12. The bacterial enhancer-dependent RNA polymerase. Zhang N, Darbari VC, Glyde R, Zhang X, Buck M. Biochem J 473 3741-3753 (2016)
  13. An Introduction to the Structure and Function of the Catalytic Core Enzyme of Escherichia coli RNA Polymerase. Sutherland C, Murakami KS. EcoSal Plus 8 (2018)
  14. Modulators of protein-protein interactions as antimicrobial agents. Kahan R, Worm DJ, de Castro GV, Ng S, Barnard A. RSC Chem Biol 2 387-409 (2021)
  15. Consensus architecture of promoters and transcription units in Escherichia coli: design principles for synthetic biology. Rangel-Chavez C, Galan-Vasquez E, Martinez-Antonio A. Mol Biosyst 13 665-676 (2017)
  16. Extracytoplasmic Function σ Factors as Tools for Coordinating Stress Responses. de Dios R, Santero E, Reyes-Ramírez F. Int J Mol Sci 22 3900 (2021)
  17. RNA polymerase molecular beacon as tool for studies of RNA polymerase-promoter interactions. Mekler V, Severinov K. Methods 86 19-26 (2015)
  18. RNA polymerases from low G+C gram-positive bacteria. Miller M, Oakley AJ, Lewis PJ. Transcription 12 92-102 (2021)
  19. Protein-induced DNA linking number change by sequence-specific DNA binding proteins and its biological effects. Leng F. Biophys Rev 8 197-207 (2016)
  20. How to Shut Down Transcription in Archaea during Virus Infection. Pilotto S, Werner F. Microorganisms 10 1824 (2022)
  21. Molecular Modeling the Proteins from the exo-xis Region of Lambda and Shigatoxigenic Bacteriophages. Donaldson LW. Antibiotics (Basel) 10 1282 (2021)
  22. Protein-induced DNA linking number change by sequence-specific DNA binding proteins and its biological effects. Leng F. Biophys Rev 8 123-133 (2016)
  23. [New inhibitors targeting bacterial RNA polymerase]. Shi J, Feng Y. Zhejiang Da Xue Xue Bao Yi Xue Ban 48 44-49 (2019)

Articles citing this publication (63)

  1. Crystal structures of the E. coli transcription initiation complexes with a complete bubble. Zuo Y, Steitz TA. Mol Cell 58 534-540 (2015)
  2. RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing. Kang JY, Mishanina TV, Bellecourt MJ, Mooney RA, Darst SA, Landick R. Mol Cell 69 802-815.e5 (2018)
  3. Structural Basis of Mycobacterium tuberculosis Transcription and Transcription Inhibition. Lin W, Mandal S, Degen D, Liu Y, Ebright YW, Li S, Feng Y, Zhang Y, Mandal S, Jiang Y, Liu S, Gigliotti M, Talaue M, Connell N, Das K, Arnold E, Ebright RH. Mol Cell 66 169-179.e8 (2017)
  4. Purification of bacterial RNA polymerase: tools and protocols. Svetlov V, Artsimovitch I. Methods Mol Biol 1276 13-29 (2015)
  5. Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex. Kang JY, Olinares PD, Chen J, Campbell EA, Mustaev A, Chait BT, Gottesman ME, Darst SA. Elife 6 e25478 (2017)
  6. Stepwise Promoter Melting by Bacterial RNA Polymerase. Chen J, Chiu C, Gopalkrishnan S, Chen AY, Olinares PDB, Saecker RM, Winkelman JT, Maloney MF, Chait BT, Ross W, Gourse RL, Campbell EA, Darst SA. Mol Cell 78 275-288.e6 (2020)
  7. Eliminating effects of particle adsorption to the air/water interface in single-particle cryo-electron microscopy: Bacterial RNA polymerase and CHAPSO. Chen J, Noble AJ, Kang JY, Darst SA. J Struct Biol X 1 100005 (2019)
  8. RNA polymerase motions during promoter melting. Feklistov A, Bae B, Hauver J, Lass-Napiorkowska A, Kalesse M, Glaus F, Altmann KH, Heyduk T, Landick R, Darst SA. Science 356 863-866 (2017)
  9. Structure of complete Pol II-DSIF-PAF-SPT6 transcription complex reveals RTF1 allosteric activation. Vos SM, Farnung L, Linden A, Urlaub H, Cramer P. Nat Struct Mol Biol 27 668-677 (2020)
  10. Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found in Mycobacterium tuberculosis. Molodtsov V, Scharf NT, Stefan MA, Garcia GA, Murakami KS. Mol Microbiol 103 1034-1045 (2017)
  11. Mycobacterial RNA polymerase forms unstable open promoter complexes that are stabilized by CarD. Davis E, Chen J, Leon K, Darst SA, Campbell EA. Nucleic Acids Res 43 433-445 (2015)
  12. TRANSCRIPTION. Structures of the RNA polymerase-σ54 reveal new and conserved regulatory strategies. Yang Y, Darbari VC, Zhang N, Lu D, Glyde R, Wang YP, Winkelman JT, Gourse RL, Murakami KS, Buck M, Zhang X. Science 349 882-885 (2015)
  13. Transcription inhibition by the depsipeptide antibiotic salinamide A. Degen D, Feng Y, Zhang Y, Ebright KY, Ebright YW, Gigliotti M, Vahedian-Movahed H, Mandal S, Talaue M, Connell N, Arnold E, Fenical W, Ebright RH. Elife 3 e02451 (2014)
  14. Mechanism of transcription initiation and promoter escape by E. coli RNA polymerase. Henderson KL, Felth LC, Molzahn CM, Shkel I, Wang S, Chhabra M, Ruff EF, Bieter L, Kraft JE, Record MT. Proc Natl Acad Sci U S A 114 E3032-E3040 (2017)
  15. Crosslink Mapping at Amino Acid-Base Resolution Reveals the Path of Scrunched DNA in Initial Transcribing Complexes. Winkelman JT, Winkelman BT, Boyce J, Maloney MF, Chen AY, Ross W, Gourse RL. Mol Cell 59 768-780 (2015)
  16. CBR antimicrobials alter coupling between the bridge helix and the β subunit in RNA polymerase. Malinen AM, Nandymazumdar M, Turtola M, Malmi H, Grocholski T, Artsimovitch I, Belogurov GA. Nat Commun 5 3408 (2014)
  17. ε, a new subunit of RNA polymerase found in gram-positive bacteria. Keller AN, Yang X, Wiedermannová J, Delumeau O, Krásný L, Lewis PJ. J Bacteriol 196 3622-3632 (2014)
  18. Structural basis of ECF-σ-factor-dependent transcription initiation. Lin W, Mandal S, Degen D, Cho MS, Feng Y, Das K, Ebright RH. Nat Commun 10 710 (2019)
  19. CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition. Bae B, Nayak D, Ray A, Mustaev A, Landick R, Darst SA. Proc Natl Acad Sci U S A 112 E4178-87 (2015)
  20. The bacterial multidrug resistance regulator BmrR distorts promoter DNA to activate transcription. Fang C, Li L, Zhao Y, Wu X, Philips SJ, You L, Zhong M, Shi X, O'Halloran TV, Li Q, Zhang Y. Nat Commun 11 6284 (2020)
  21. Activation of the mechanosensitive ion channel MscL by mechanical stimulation of supported Droplet-Hydrogel bilayers. Rosholm KR, Baker MA, Ridone P, Nakayama Y, Rohde PR, Cuello LG, Lee LK, Martinac B. Sci Rep 7 45180 (2017)
  22. Replisome bypass of transcription complexes and R-loops. Brüning JG, Marians KJ. Nucleic Acids Res 48 10353-10367 (2020)
  23. T7 phage factor required for managing RpoS in Escherichia coli. Tabib-Salazar A, Liu B, Barker D, Burchell L, Qimron U, Matthews SJ, Wigneshweraraj S. Proc Natl Acad Sci U S A 115 E5353-E5362 (2018)
  24. Single-Molecule Real-Time 3D Imaging of the Transcription Cycle by Modulation Interferometry. Wang G, Hauver J, Thomas Z, Darst SA, Pertsinidis A. Cell 167 1839-1852.e21 (2016)
  25. Structural basis for transcription antitermination at bacterial intrinsic terminator. You L, Shi J, Shen L, Li L, Fang C, Yu C, Cheng W, Feng Y, Zhang Y. Nat Commun 10 3048 (2019)
  26. Competence for genetic transformation in Streptococcus pneumoniae: mutations in σA bypass the comW requirement. Tovpeko Y, Morrison DA. J Bacteriol 196 3724-3734 (2014)
  27. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex. Mekler V, Minakhin L, Borukhov S, Mustaev A, Severinov K. J Mol Biol 426 3973-3984 (2014)
  28. Structural origins of Escherichia coli RNA polymerase open promoter complex stability. Saecker RM, Chen J, Chiu CE, Malone B, Sotiris J, Ebrahim M, Yen LY, Eng ET, Darst SA. Proc Natl Acad Sci U S A 118 e2112877118 (2021)
  29. Crystal structure of Aquifex aeolicus σN bound to promoter DNA and the structure of σN-holoenzyme. Campbell EA, Kamath S, Rajashankar KR, Wu M, Darst SA. Proc Natl Acad Sci U S A 114 E1805-E1814 (2017)
  30. Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain. Hattangady DS, Singh AK, Muthaiyan A, Jayaswal RK, Gustafson JE, Ulanov AV, Li Z, Wilkinson BJ, Pfeltz RF. Antibiotics (Basel) 4 76-112 (2015)
  31. The Core and Holoenzyme Forms of RNA Polymerase from Mycobacterium smegmatis. Kouba T, Pospíšil J, Hnilicová J, Šanderová H, Barvík I, Krásný L. J Bacteriol 201 e00583-18 (2019)
  32. Discovery of Antibacterials That Inhibit Bacterial RNA Polymerase Interactions with Sigma Factors. Ye J, Chu AJ, Harper R, Chan ST, Shek TL, Zhang Y, Ip M, Sambir M, Artsimovitch I, Zuo Z, Yang X, Ma C. J Med Chem 63 7695-7720 (2020)
  33. A Bacteriophage DNA Mimic Protein Employs a Non-specific Strategy to Inhibit the Bacterial RNA Polymerase. Wang Z, Wang H, Mulvenna N, Sanz-Hernandez M, Zhang P, Li Y, Ma J, Wang Y, Matthews S, Wigneshweraraj S, Liu B. Front Microbiol 12 692512 (2021)
  34. A Novel Jumbo Phage PhiMa05 Inhibits Harmful Microcystis sp. Naknaen A, Suttinun O, Surachat K, Khan E, Pomwised R. Front Microbiol 12 660351 (2021)
  35. First-In-Class Inhibitors Targeting the Interaction between Bacterial RNA Polymerase and Sigma Initiation Factor Affect the Viability and Toxin Release of Streptococcus pneumoniae. Ye J, Chu AJ, Lin L, Yang X, Ma C. Molecules 24 E2902 (2019)
  36. Rho-dependent transcription termination proceeds via three routes. Song E, Uhm H, Munasingha PR, Hwang S, Seo YS, Kang JY, Kang C, Hohng S. Nat Commun 13 1663 (2022)
  37. The dormancy-specific regulator, SutA, is intrinsically disordered and modulates transcription initiation in Pseudomonas aeruginosa. Bergkessel M, Babin BM, VanderVelde D, Sweredoski MJ, Moradian A, Eggleston-Rangel R, Hess S, Tirrell DA, Artsimovitch I, Newman DK. Mol Microbiol 112 992-1009 (2019)
  38. Fluorescence Resonance Energy Transfer Characterization of DNA Wrapping in Closed and Open Escherichia coli RNA Polymerase-λP(R) Promoter Complexes. Sreenivasan R, Heitkamp S, Chhabra M, Saecker R, Lingeman E, Poulos M, McCaslin D, Capp MW, Artsimovitch I, Record MT. Biochemistry 55 2174-2186 (2016)
  39. Pseudomonas aeruginosa SutA wedges RNAP lobe domain open to facilitate promoter DNA unwinding. He D, You L, Wu X, Shi J, Wen A, Yan Z, Mu W, Fang C, Feng Y, Zhang Y. Nat Commun 13 4204 (2022)
  40. The interaction of ω2 with the RNA polymerase β' subunit functions as an activation to repression switch. Volante A, Carrasco B, Tabone M, Alonso JC. Nucleic Acids Res 43 9249-9261 (2015)
  41. Benzyl and benzoyl benzoic acid inhibitors of bacterial RNA polymerase-sigma factor interaction. Ye J, Chu AJ, Lin L, Chan ST, Harper R, Xiao M, Artsimovitch I, Zuo Z, Ma C, Yang X. Eur J Med Chem 208 112671 (2020)
  42. Bypass of complex co-directional replication-transcription collisions by replisome skipping. Brüning JG, Marians KJ. Nucleic Acids Res 49 9870-9885 (2021)
  43. Exploiting phage strategies to modulate bacterial transcription. Wahl MC, Sen R. Transcription 10 222-230 (2019)
  44. Novel Escherichia coli RNA Polymerase Binding Protein Encoded by Bacteriophage T5. Klimuk E, Mekler V, Lavysh D, Serebryakova M, Akulenko N, Severinov K. Viruses 12 E807 (2020)
  45. Structural basis of transcription inhibition by the DNA mimic protein Ocr of bacteriophage T7. Ye F, Kotta-Loizou I, Jovanovic M, Liu X, Dryden DT, Buck M, Zhang X. Elife 9 e52125 (2020)
  46. The stress sigma factor of RNA polymerase RpoS/σS is a solvent-exposed open molecule in solution. Cavaliere P, Brier S, Filipenko P, Sizun C, Raynal B, Bonneté F, Levi-Acobas F, Bellalou J, England P, Chamot-Rooke J, Mayer C, Norel F. Biochem J 475 341-354 (2018)
  47. An Amino Acid Substitution in RNA Polymerase That Inhibits the Utilization of an Alternative Sigma Factor. Wang Erickson AF, Deighan P, Garcia CP, Weinzierl ROJ, Hochschild A, Losick R. J Bacteriol 199 e00277-17 (2017)
  48. An ensemble of interconverting conformations of the elemental paused transcription complex creates regulatory options. Kang JY, Mishanina TV, Bao Y, Chen J, Llewellyn E, Liu J, Darst SA, Landick R. Proc Natl Acad Sci U S A 120 e2215945120 (2023)
  49. article-commentary Promoter melting by an alternative σ, one base at a time. Darst SA, Feklistov A, Gross CA. Nat Struct Mol Biol 21 350-351 (2014)
  50. Structural analysis of sigma E interactions with core RNA polymerase and its cognate P-hsp20 promoter of Mycobacterium tuberculosis. Gupta AM, Pal P, Mandal S. J Biomol Struct Dyn 34 792-799 (2016)
  51. Structural basis of RNA polymerase inhibition by viral and host factors. Pilotto S, Fouqueau T, Lukoyanova N, Sheppard C, Lucas-Staat S, Díaz-Santín LM, Matelska D, Prangishvili D, Cheung ACM, Werner F. Nat Commun 12 5523 (2021)
  52. Structure of Escherichia coli RNA polymerase holoenzyme at last. Rothman-Denes LB. Proc Natl Acad Sci U S A 110 19662-19663 (2013)
  53. The Xp10 Bacteriophage Protein P7 Inhibits Transcription by the Major and Major Variant Forms of the Host RNA Polymerase via a Common Mechanism. Brown DR, Sheppard CM, Burchell L, Matthews S, Wigneshweraraj S. J Mol Biol 428 3911-3919 (2016)
  54. Transcriptional pause extension benefits the stand-by rather than catch-up Rho-dependent termination. Song E, Hwang S, Munasingha PR, Seo YS, Kang JY, Kang C, Hohng S. Nucleic Acids Res 51 2778-2789 (2023)
  55. Bacterial Virus Ontology; Coordinating across Databases. Hulo C, Masson P, Toussaint A, Osumi-Sutherland D, de Castro E, Auchincloss AH, Poux S, Bougueleret L, Xenarios I, Le Mercier P. Viruses 9 E126 (2017)
  56. Molecular basis of RNA polymerase promoter specificity switch revealed through studies of Thermus bacteriophage transcription regulator. Severinov K, Minakhin L, Sekine SI, Lopatina A, Yokoyama S. Bacteriophage 4 e29399 (2014)
  57. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis. Zhang N, Schäfer J, Sharma A, Rayner L, Zhang X, Tuma R, Stockley P, Buck M. J Mol Biol 427 3516-3526 (2015)
  58. RNA polymerases in strict endosymbiont bacteria with extreme genome reduction show distinct erosions that might result in limited and differential promoter recognition. Rangel-Chávez CP, Galán-Vásquez E, Pescador-Tapia A, Delaye L, Martínez-Antonio A. PLoS One 16 e0239350 (2021)
  59. Structural Insight into the Mechanism of σ32-Mediated Transcription Initiation of Bacterial RNA Polymerase. Lu Q, Chen T, Wang J, Wang F, Ye W, Ma L, Wu S. Biomolecules 13 738 (2023)
  60. A Pseudomonas Lysogenic Bacteriophage Crossing the Antarctic and Arctic, Representing a New Genus of Autographiviridae. Liu Z, Jiang W, Kim C, Peng X, Fan C, Wu Y, Xie Z, Peng F. Int J Mol Sci 24 7662 (2023)
  61. A hypothetical hierarchical mechanism of the self-assembly of the Escherichia coli RNA polymerase σ(70) subunit. Koroleva ON, Dubrovin EV, Tolstova AP, Kuzmina NV, Laptinskaya TV, Yaminsky IV, Drutsa VL. Soft Matter 12 1974-1982 (2016)
  62. Automatic Inference of Sequence from Low-Resolution Crystallographic Data. Ben-Aharon Z, Levitt M, Kalisman N. Structure 26 1546-1554.e2 (2018)
  63. Closed for business: exit-channel coupling to active site conformation in bacterial RNA polymerase. Martin CT, Theis K. Nat Struct Mol Biol 21 741-742 (2014)