4o67 Citations

The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop.

Cell Rep 6 421-30 (2014)
Related entries: 4o68, 4o69, 4o6a

Cited: 243 times
EuropePMC logo PMID: 24462292

Abstract

The presence of DNA in the cytoplasm is a danger signal that triggers immune and inflammatory responses. Cytosolic DNA binds to and activates cyclic GMP-AMP (cGAMP) synthase (cGAS), which produces the second messenger cGAMP. cGAMP binds to the adaptor protein STING and activates a signaling cascade that leads to the production of type I interferons and other cytokines. Here, we report the crystal structures of human cGAS in its apo form, representing its autoinhibited conformation as well as in its cGAMP- and sulfate-bound forms. These structures reveal switch-like conformational changes of an activation loop that result in the rearrangement of the catalytic site. The structure of DNA-bound cGAS reveals a complex composed of dimeric cGAS bound to two molecules of DNA. Functional analyses of cGAS mutants demonstrate that both the protein-protein interface and the two DNA binding surfaces are critical for cGAS activation. These results provide insights into the mechanism of DNA sensing by cGAS.

Articles - 4o67 mentioned but not cited (6)

  1. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Zhang X, Wu J, Du F, Xu H, Sun L, Chen Z, Brautigam CA, Zhang X, Chen ZJ. Cell Rep 6 421-430 (2014)
  2. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Millman A, Melamed S, Amitai G, Sorek R. Nat Microbiol 5 1608-1615 (2020)
  3. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay. Hall J, Brault A, Vincent F, Weng S, Wang H, Dumlao D, Aulabaugh A, Aivazian D, Castro D, Chen M, Culp J, Dower K, Gardner J, Hawrylik S, Golenbock D, Hepworth D, Horn M, Jones L, Jones P, Latz E, Li J, Lin LL, Lin W, Lin D, Lovering F, Niljanskul N, Nistler R, Pierce B, Plotnikova O, Schmitt D, Shanker S, Smith J, Snyder W, Subashi T, Trujillo J, Tyminski E, Wang G, Wong J, Lefker B, Dakin L, Leach K. PLoS One 12 e0184843 (2017)
  4. cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity. Liu H, Moura-Alves P, Pei G, Mollenkopf HJ, Hurwitz R, Wu X, Wang F, Liu S, Ma M, Fei Y, Zhu C, Koehler AB, Oberbeck-Mueller D, Hahnke K, Klemm M, Guhlich-Bornhof U, Ge B, Tuukkanen A, Kolbe M, Dorhoi A, Kaufmann SH. EMBO Rep 20 e46293 (2019)
  5. OASes and STING: adaptive evolution in concert. Mozzi A, Pontremoli C, Forni D, Clerici M, Pozzoli U, Bresolin N, Cagliani R, Sironi M. Genome Biol Evol 7 1016-1032 (2015)
  6. The catalytic mechanism of cyclic GMP-AMP synthase (cGAS) and implications for innate immunity and inhibition. Hall J, Ralph EC, Shanker S, Wang H, Byrnes LJ, Horst R, Wong J, Brault A, Dumlao D, Smith JF, Dakin LA, Schmitt DC, Trujillo J, Vincent F, Griffor M, Aulabaugh AE. Protein Sci 26 2367-2380 (2017)


Reviews citing this publication (124)

  1. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Chen Q, Sun L, Chen ZJ. Nat Immunol 17 1142-1149 (2016)
  2. Innate immune sensing and signaling of cytosolic nucleic acids. Wu J, Chen ZJ. Annu Rev Immunol 32 461-488 (2014)
  3. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Cai X, Chiu YH, Chen ZJ. Mol Cell 54 289-296 (2014)
  4. Molecular mechanisms and cellular functions of cGAS-STING signalling. Hopfner KP, Hornung V. Nat Rev Mol Cell Biol 21 501-521 (2020)
  5. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Decout A, Katz JD, Venkatraman S, Ablasser A. Nat Rev Immunol 21 548-569 (2021)
  6. Mitochondrial DNA in inflammation and immunity. Riley JS, Tait SW. EMBO Rep 21 e49799 (2020)
  7. Discriminating self from non-self in nucleic acid sensing. Schlee M, Hartmann G. Nat Rev Immunol 16 566-580 (2016)
  8. A framework for understanding the functions of biomolecular condensates across scales. Lyon AS, Peeples WB, Rosen MK. Nat Rev Mol Cell Biol 22 215-235 (2021)
  9. Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Tan X, Sun L, Chen J, Chen ZJ. Annu Rev Microbiol 72 447-478 (2018)
  10. Crosstalk between Cytoplasmic RIG-I and STING Sensing Pathways. Zevini A, Olagnier D, Hiscott J. Trends Immunol 38 194-205 (2017)
  11. The enemy within: endogenous retroelements and autoimmune disease. Volkman HE, Stetson DB. Nat Immunol 15 415-422 (2014)
  12. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Hornung V, Hartmann R, Ablasser A, Hopfner KP. Nat Rev Immunol 14 521-528 (2014)
  13. STING pathway agonism as a cancer therapeutic. Flood BA, Higgs EF, Li S, Luke JJ, Gajewski TF. Immunol Rev 290 24-38 (2019)
  14. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Ablasser A, Hur S. Nat Immunol 21 17-29 (2020)
  15. Cyclic GMP-AMP as an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Kato K, Omura H, Ishitani R, Nureki O. Annu Rev Biochem 86 541-566 (2017)
  16. Dissecting How CD4 T Cells Are Lost During HIV Infection. Doitsh G, Greene WC. Cell Host Microbe 19 280-291 (2016)
  17. Evolutionary Origins of cGAS-STING Signaling. Margolis SR, Wilson SC, Vance RE. Trends Immunol 38 733-743 (2017)
  18. TLRs: linking inflammation and breast cancer. Bhatelia K, Singh K, Singh R. Cell Signal 26 2350-2357 (2014)
  19. Ubiquitination in the antiviral immune response. Davis ME, Gack MU. Virology 479-480 52-65 (2015)
  20. Research Advances in How the cGAS-STING Pathway Controls the Cellular Inflammatory Response. Wan D, Jiang W, Hao J. Front Immunol 11 615 (2020)
  21. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Zhang Z, Liu X, Chen D, Yu J. Signal Transduct Target Ther 7 258 (2022)
  22. Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy. Zheng J, Mo J, Zhu T, Zhuo W, Yi Y, Hu S, Yin J, Zhang W, Zhou H, Liu Z. Mol Cancer 19 133 (2020)
  23. Signaling by cGAS-STING in Neurodegeneration, Neuroinflammation, and Aging. Paul BD, Snyder SH, Bohr VA. Trends Neurosci 44 83-96 (2021)
  24. The interactions between cGAS-STING pathway and pathogens. Cheng Z, Dai T, He X, Zhang Z, Xie F, Wang S, Zhang L, Zhou F. Signal Transduct Target Ther 5 91 (2020)
  25. The Impact of Radiation-Induced DNA Damage on cGAS-STING-Mediated Immune Responses to Cancer. Storozynsky Q, Hitt MM. Int J Mol Sci 21 E8877 (2020)
  26. Old dogs, new trick: classic cancer therapies activate cGAS. Yum S, Li M, Chen ZJ. Cell Res 30 639-648 (2020)
  27. DNA sensor cGAS-mediated immune recognition. Xia P, Wang S, Gao P, Gao G, Fan Z. Protein Cell 7 777-791 (2016)
  28. Structural biology of innate immunity. Yin Q, Fu TM, Li J, Wu H. Annu Rev Immunol 33 393-416 (2015)
  29. cGAS-cGAMP-STING: The three musketeers of cytosolic DNA sensing and signaling. Tao J, Zhou X, Jiang Z. IUBMB Life 68 858-870 (2016)
  30. Activation and regulation of DNA-driven immune responses. Paludan SR. Microbiol Mol Biol Rev 79 225-241 (2015)
  31. PRRs are watching you: Localization of innate sensing and signaling regulators. Chow J, Franz KM, Kagan JC. Virology 479-480 104-109 (2015)
  32. The Evolving Erythrocyte: Red Blood Cells as Modulators of Innate Immunity. Anderson HL, Brodsky IE, Mangalmurti NS. J Immunol 201 1343-1351 (2018)
  33. Antimalarial Drugs as Immune Modulators: New Mechanisms for Old Drugs. An J, Minie M, Sasaki T, Woodward JJ, Elkon KB. Annu Rev Med 68 317-330 (2017)
  34. Cytosolic sensing of immuno-stimulatory DNA, the enemy within. Dhanwani R, Takahashi M, Sharma S. Curr Opin Immunol 50 82-87 (2018)
  35. Is hydroxychloroquine beneficial for COVID-19 patients? Li X, Wang Y, Agostinis P, Rabson A, Melino G, Carafoli E, Shi Y, Sun E. Cell Death Dis 11 512 (2020)
  36. Replication Stress, DNA Damage, Inflammatory Cytokines and Innate Immune Response. Ragu S, Matos-Rodrigues G, Lopez BS. Genes (Basel) 11 E409 (2020)
  37. Taming the Autophagy as a Strategy for Treating COVID-19. García-Pérez BE, González-Rojas JA, Salazar MI, Torres-Torres C, Castrejón-Jiménez NS. Cells 9 E2679 (2020)
  38. Cytosolic nucleic acid sensors and innate immune regulation. Ori D, Murase M, Kawai T. Int Rev Immunol 36 74-88 (2017)
  39. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Garland KM, Sheehy TL, Wilson JT. Chem Rev 122 5977-6039 (2022)
  40. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Yu L, Liu P. Signal Transduct Target Ther 6 170 (2021)
  41. The mechanism of double-stranded DNA sensing through the cGAS-STING pathway. Shu C, Li X, Li P. Cytokine Growth Factor Rev 25 641-648 (2014)
  42. Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Opoku-Temeng C, Zhou J, Zheng Y, Su J, Sintim HO. Chem Commun (Camb) 52 9327-9342 (2016)
  43. A STING to inflammation and autoimmunity. Kumar V. J Leukoc Biol 106 171-185 (2019)
  44. Signaling Through Nucleic Acid Sensors and Their Roles in Inflammatory Diseases. Okude H, Ori D, Kawai T. Front Immunol 11 625833 (2020)
  45. Conserved strategies for pathogen evasion of cGAS-STING immunity. Eaglesham JB, Kranzusch PJ. Curr Opin Immunol 66 27-34 (2020)
  46. Molecular and Structural Basis of DNA Sensors in Antiviral Innate Immunity. Zahid A, Ismail H, Li B, Jin T. Front Immunol 11 613039 (2020)
  47. Regulation and Consequences of cGAS Activation by Self-DNA. Zierhut C, Funabiki H. Trends Cell Biol 30 594-605 (2020)
  48. cGAS and CD-NTase enzymes: structure, mechanism, and evolution. Kranzusch PJ. Curr Opin Struct Biol 59 178-187 (2019)
  49. The cGAS-STING Pathway in Bacterial Infection and Bacterial Immunity. Liu N, Pang X, Zhang H, Ji P. Front Immunol 12 814709 (2021)
  50. Microglial Implications in SARS-CoV-2 Infection and COVID-19: Lessons From Viral RNA Neurotropism and Possible Relevance to Parkinson's Disease. Awogbindin IO, Ben-Azu B, Olusola BA, Akinluyi ET, Adeniyi PA, Di Paolo T, Tremblay MÈ. Front Cell Neurosci 15 670298 (2021)
  51. The cGAS-STING Pathway: A Promising Immunotherapy Target. Ou L, Zhang A, Cheng Y, Chen Y. Front Immunol 12 795048 (2021)
  52. The role of cGAS in innate immunity and beyond. Ablasser A, Gulen MF. J Mol Med (Berl) 94 1085-1093 (2016)
  53. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry. Abyzov A, Blackledge M, Zweckstetter M. Chem Rev 122 6719-6748 (2022)
  54. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. Pharmacol Rev 67 462-504 (2015)
  55. Nuclear cGAS: guard or prisoner? de Oliveira Mann CC, Hopfner KP. EMBO J 40 e108293 (2021)
  56. Sensing of dangerous DNA. Gasser S, Zhang WYL, Tan NYJ, Tripathi S, Suter MA, Chew ZH, Khatoo M, Ngeow J, Cheung FSG. Mech Ageing Dev 165 33-46 (2017)
  57. The cGAS-STING Pathway: Novel Perspectives in Liver Diseases. Xu D, Tian Y, Xia Q, Ke B. Front Immunol 12 682736 (2021)
  58. The cGAS/STING Pathway: A Novel Target for Cancer Therapy. Gan Y, Li X, Han S, Liang Q, Ma X, Rong P, Wang W, Li W. Front Immunol 12 795401 (2021)
  59. Mitochondria and cell death-associated inflammation. Vringer E, Tait SWG. Cell Death Differ 30 304-312 (2023)
  60. Cyclic dinucleotides at the forefront of innate immunity. Zaver SA, Woodward JJ. Curr Opin Cell Biol 63 49-56 (2020)
  61. K63 ubiquitination in immune signaling. Madiraju C, Novack JP, Reed JC, Matsuzawa SI. Trends Immunol 43 148-162 (2022)
  62. Nuclear cGAS: sequestration and beyond. Bai J, Liu F. Protein Cell 13 90-101 (2022)
  63. Regulation and inhibition of the DNA sensor cGAS. Hertzog J, Rehwinkel J. EMBO Rep 21 e51345 (2020)
  64. STING Signaling and Sterile Inflammation. Couillin I, Riteau N. Front Immunol 12 753789 (2021)
  65. Emerging role of STING signalling in CNS injury: inflammation, autophagy, necroptosis, ferroptosis and pyroptosis. Hu X, Zhang H, Zhang Q, Yao X, Ni W, Zhou K. J Neuroinflammation 19 242 (2022)
  66. Lipids that directly regulate innate immune signal transduction. Barnett KC, Kagan JC. Innate Immun 26 4-14 (2020)
  67. Role of Post-Translational Modifications of cGAS in Innate Immunity. Wu Y, Li S. Int J Mol Sci 21 E7842 (2020)
  68. Crossed Pathways for Radiation-Induced and Immunotherapy-Related Lung Injury. Zhang Z, Zhou J, Verma V, Liu X, Wu M, Yu J, Chen D. Front Immunol 12 774807 (2021)
  69. Intracellular sensing of viral DNA by the innate immune system. Mansur DS, Smith GL, Ferguson BJ. Microbes Infect 16 1002-1012 (2014)
  70. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer's Disease Progression. Andronie-Cioara FL, Ardelean AI, Nistor-Cseppento CD, Jurcau A, Jurcau MC, Pascalau N, Marcu F. Int J Mol Sci 24 1869 (2023)
  71. Cytosolic sensing of aberrant DNA: arming STING on the endoplasmic reticulum. Wang Q, Liu X, Zhou Q, Wang C. Expert Opin Ther Targets 19 1397-1409 (2015)
  72. Filament-like Assemblies of Intracellular Nucleic Acid Sensors: Commonalities and Differences. Cadena C, Hur S. Mol Cell 76 243-254 (2019)
  73. Viral-mediated activation and inhibition of programmed cell death. Verburg SG, Lelievre RM, Westerveld MJ, Inkol JM, Sun YL, Workenhe ST. PLoS Pathog 18 e1010718 (2022)
  74. Evasion of Intracellular DNA Sensing by Human Herpesviruses. Bhowmik D, Zhu F. Front Cell Infect Microbiol 11 647992 (2021)
  75. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Chowdhury A, Witte S, Aich A. Front Cell Dev Biol 10 796066 (2022)
  76. Immune Regulation of the cGAS-STING Signaling Pathway in the Tumor Microenvironment and Its Clinical Application. Pu F, Pu F, Chen F, Liu J, Zhang Z, Shao Z. Onco Targets Ther 14 1501-1516 (2021)
  77. The cGAS-STING pathway: more than fighting against viruses and cancer. Bao T, Liu J, Leng J, Cai L. Cell Biosci 11 209 (2021)
  78. Activation of Innate Immunity by Therapeutic Nucleic Acids. Bishani A, Chernolovskaya EL. Int J Mol Sci 22 13360 (2021)
  79. Molecular effects and retinopathy induced by hydroxychloroquine during SARS-CoV-2 therapy: Role of CYP450 isoforms and epigenetic modulations. Paniri A, Hosseini MM, Rasoulinejad A, Akhavan-Niaki H. Eur J Pharmacol 886 173454 (2020)
  80. cGAS/STING: novel perspectives of the classic pathway. Gao M, He Y, Tang H, Chen X, Liu S, Tao Y. Mol Biomed 1 7 (2020)
  81. Immune sensing of nucleic acids in inflammatory skin diseases. Demaria O, Di Domizio J, Gilliet M. Semin Immunopathol 36 519-529 (2014)
  82. The Cytosolic DNA-Sensing cGAS-STING Pathway in Liver Diseases. Wang Z, Chen N, Li Z, Xu G, Zhan X, Tang J, Xiao X, Bai Z. Front Cell Dev Biol 9 717610 (2021)
  83. Therapeutic Development by Targeting the cGAS-STING Pathway in Autoimmune Disease and Cancer. Li Q, Tian S, Liang J, Fan J, Lai J, Chen Q. Front Pharmacol 12 779425 (2021)
  84. cGAS and cancer therapy: a double-edged sword. Du JM, Qian MJ, Yuan T, Chen RH, He QJ, Yang B, Ling Q, Zhu H. Acta Pharmacol Sin 43 2202-2211 (2022)
  85. Control of innate immunity by the cGAS-STING pathway. Mosallanejad K, Kagan JC. Immunol Cell Biol 100 409-423 (2022)
  86. Regulation and function of the cGAS-MITA/STING axis in health and disease. Zhang ZD, Zhong B. Cell Insight 1 100001 (2022)
  87. The pleiotropic roles of cGAS-STING signaling in the tumor microenvironment. Li J, Bakhoum SF. J Mol Cell Biol 14 mjac019 (2022)
  88. DNA-Based Biomaterials for Immunoengineering. Maeda M, Kojima T, Song Y, Takayama S. Adv Healthc Mater 8 e1801243 (2019)
  89. Immunity and Viral Infections: Modulating Antiviral Response via CRISPR-Cas Systems. Brezgin S, Kostyusheva A, Bayurova E, Volchkova E, Gegechkori V, Gordeychuk I, Glebe D, Kostyushev D, Chulanov V. Viruses 13 1373 (2021)
  90. Mitochondrial DNA and Exercise: Implications for Health and Injuries in Sports. Zanini G, De Gaetano A, Selleri V, Savino G, Cossarizza A, Pinti M, Mattioli AV, Nasi M. Cells 10 2575 (2021)
  91. A Variety of Nucleic Acid Species Are Sensed by cGAS, Implications for Its Diverse Functions. Wang D, Zhao H, Shen Y, Chen Q. Front Immunol 13 826880 (2022)
  92. Current Concepts on Pathogenic Mechanisms and Histopathology in Cutaneous Lupus Erythematosus. Fetter T, Braegelmann C, de Vos L, Wenzel J. Front Med (Lausanne) 9 915828 (2022)
  93. Inhibitory targeting cGAS-STING-TBK1 axis: Emerging strategies for autoimmune diseases therapy. Zhang M, Zou Y, Zhou X, Zhou J. Front Immunol 13 954129 (2022)
  94. A proteomics perspective on viral DNA sensors in host defense and viral immune evasion mechanisms. Crow MS, Javitt A, Cristea IM. J Mol Biol 427 1995-2012 (2015)
  95. Biocatalytic Synthesis of Antiviral Nucleosides, Cyclic Dinucleotides, and Oligonucleotide Therapies. Van Giesen KJD, Thompson MJ, Meng Q, Lovelock SL. JACS Au 3 13-24 (2023)
  96. Cytosolic and nuclear recognition of virus and viral evasion. Li S, Cao L, Zhang Z, Kuang M, Chen L, Zhao Y, Luo Y, Yin Z, You F. Mol Biomed 2 30 (2021)
  97. Polyvalent design in the cGAS-STING pathway. Bennett ZT, Li S, Sumer BD, Gao J. Semin Immunol 56 101580 (2021)
  98. Protein Dynamics in Cytosolic DNA-Sensing Antiviral Innate Immune Signaling Pathways. Zheng C. Front Immunol 11 1255 (2020)
  99. TAM-targeted reeducation for enhanced cancer immunotherapy: Mechanism and recent progress. Shen X, Zhou S, Yang Y, Hong T, Xiang Z, Zhao J, Zhu C, Zeng L, Zhang L. Front Oncol 12 1034842 (2022)
  100. The Influence of Mitochondrial-DNA-Driven Inflammation Pathways on Macrophage Polarization: A New Perspective for Targeted Immunometabolic Therapy in Cerebral Ischemia-Reperfusion Injury. Yu S, Fu J, Wang J, Zhao Y, Liu B, Wei J, Yan X, Su J. Int J Mol Sci 23 135 (2021)
  101. The role of STING signaling in central nervous system infection and neuroinflammatory disease. Fritsch LE, Kelly C, Pickrell AM. WIREs Mech Dis 15 e1597 (2023)
  102. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Zool Res 44 183-218 (2023)
  103. Potential Therapeutic Value of the STING Inhibitors. Zhang S, Zheng R, Pan Y, Sun H. Molecules 28 3127 (2023)
  104. Regulation of cGAS Activity and Downstream Signaling. Joshi B, Joshi JC, Mehta D. Cells 11 2812 (2022)
  105. Regulation of cGAS-STING Pathway - Implications for Systemic Lupus Erythematosus. Hagiwara AM, Moore RE, Wallace DJ, Ishimori M, Jefferies CA. Rheumatol Immunol Res 2 173-184 (2021)
  106. cGAMP-activated cGAS-STING signaling: its bacterial origins and evolutionary adaptation by metazoans. Patel DJ, Yu Y, Xie W. Nat Struct Mol Biol 30 245-260 (2023)
  107. Crosstalk between immune checkpoint and DNA damage response inhibitors for radiosensitization of tumors. Classen S, Petersen C, Borgmann K. Strahlenther Onkol 199 1152-1163 (2023)
  108. Nucleic Acid Sensing Pathways in DNA Repair Targeted Cancer Therapy. Xie B, Luo A. Front Cell Dev Biol 10 903781 (2022)
  109. [Innate immune DNA sensing pathways]. Abe T. Uirusu 64 83-94 (2014)
  110. Allosteric crosstalk in modular proteins: Function fine-tuning and drug design. Abhishek S, Deeksha W, Nethravathi KR, Davari MD, Rajakumara E. Comput Struct Biotechnol J 21 5003-5015 (2023)
  111. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Korneenko TV, Pestov NB, Nevzorov IA, Daks AA, Trachuk KN, Solopova ON, Barlev NA. Pharmaceuticals (Basel) 16 1675 (2023)
  112. DNA sensing in cancer: Pro-tumour and anti-tumour functions of cGAS-STING signalling. Wheeler OPG, Unterholzner L. Essays Biochem 67 905-918 (2023)
  113. Genome integrity and inflammation in the nervous system. Aditi, McKinnon PJ. DNA Repair (Amst) 119 103406 (2022)
  114. Molecular Function of cGAS-STING in SARS-CoV-2: A Novel Approach to COVID-19 Treatment. Moossavi M, Rastegar M, Moossavi SZ, Khorasani M. Biomed Res Int 2022 6189254 (2022)
  115. Significance of the cGAS-STING Pathway in Health and Disease. Zhou J, Zhuang Z, Li J, Feng Z. Int J Mol Sci 24 13316 (2023)
  116. Cyclic GMP-AMP Synthase in Cancer Prevention. Chen W, Lee GE, Jeung D, Byun J, Juan W, Cho YY. J Cancer Prev 28 143-196 (2023)
  117. Mechanism and therapeutic potential of targeting cGAS-STING signaling in neurological disorders. Huang Y, Liu B, Sinha SC, Amin S, Gan L. Mol Neurodegener 18 79 (2023)
  118. Mitochondria in innate immunity signaling and its therapeutic implications in autoimmune diseases. Jiao Y, Yan Z, Yang A. Front Immunol 14 1160035 (2023)
  119. Pathogenetic mechanisms and treatment targets in cerebral malaria. Hadjilaou A, Brandi J, Riehn M, Friese MA, Jacobs T. Nat Rev Neurol 19 688-709 (2023)
  120. Role of the cGAS-STING pathway in radiotherapy for non-small cell lung cancer. Yang C, Liang Y, Liu N, Sun M. Radiat Oncol 18 145 (2023)
  121. The Crucial Roles and Research Advances of cGAS-STING Pathway in Cutaneous Disorders. Huang C, Li W, Ren X, Tang M, Zhang K, Zhuo F, Dou X, Yu B. Inflammation 46 1161-1176 (2023)
  122. The battle between the innate immune cGAS-STING signaling pathway and human herpesvirus infection. Jin X, Wang W, Zhao X, Jiang W, Shao Q, Chen Z, Huang C. Front Immunol 14 1235590 (2023)
  123. cGAS-STING pathway in ischemia-reperfusion injury: a potential target to improve transplantation outcomes. Chen Z, Liu Y, Lin Z, Huang W. Front Immunol 14 1231057 (2023)
  124. cGAS-STING signaling pathway in intestinal homeostasis and diseases. Yang Y, Wang L, Peugnet-González I, Parada-Venegas D, Dijkstra G, Faber KN. Front Immunol 14 1239142 (2023)

Articles citing this publication (113)

  1. cGAS surveillance of micronuclei links genome instability to innate immunity. Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, Simpson DJ, Olova N, Sutcliffe H, Rainger JK, Leitch A, Osborn RT, Wheeler AP, Nowotny M, Gilbert N, Chandra T, Reijns MAM, Jackson AP. Nature 548 461-465 (2017)
  2. cGAS is essential for cellular senescence. Yang H, Wang H, Ren J, Chen Q, Chen ZJ. Proc Natl Acad Sci U S A 114 E4612-E4620 (2017)
  3. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Du M, Chen ZJ. Science 361 704-709 (2018)
  4. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Gao D, Li T, Li XD, Chen X, Li QZ, Wight-Carter M, Chen ZJ. Proc Natl Acad Sci U S A 112 E5699-705 (2015)
  5. cGAS is essential for the antitumor effect of immune checkpoint blockade. Wang H, Hu S, Chen X, Shi H, Chen C, Sun L, Chen ZJ. Proc Natl Acad Sci U S A 114 1637-1642 (2017)
  6. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Andreeva L, Hiller B, Kostrewa D, Lässig C, de Oliveira Mann CC, Jan Drexler D, Maiser A, Gaidt M, Leonhardt H, Hornung V, Hopfner KP. Nature 549 394-398 (2017)
  7. Inhibition of cGAS DNA Sensing by a Herpesvirus Virion Protein. Wu JJ, Li W, Shao Y, Avey D, Fu B, Gillen J, Hand T, Ma S, Liu X, Miley W, Konrad A, Neipel F, Stürzl M, Whitby D, Li H, Zhu F. Cell Host Microbe 18 333-344 (2015)
  8. Cytosolic RNA:DNA hybrids activate the cGAS-STING axis. Mankan AK, Schmidt T, Chauhan D, Goldeck M, Höning K, Gaidt M, Kubarenko AV, Andreeva L, Hopfner KP, Hornung V. EMBO J 33 2937-2946 (2014)
  9. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Jønsson KL, Laustsen A, Krapp C, Skipper KA, Thavachelvam K, Hotter D, Egedal JH, Kjolby M, Mohammadi P, Prabakaran T, Sørensen LK, Sun C, Jensen SB, Holm CK, Lebbink RJ, Johannsen M, Nyegaard M, Nyegaard M, Mikkelsen JG, Kirchhoff F, Paludan SR, Jakobsen MR. Nat Commun 8 14391 (2017)
  10. Structure of the Human cGAS-DNA Complex Reveals Enhanced Control of Immune Surveillance. Zhou W, Whiteley AT, de Oliveira Mann CC, Morehouse BR, Nowak RP, Fischer ES, Gray NS, Mekalanos JJ, Kranzusch PJ. Cell 174 300-311.e11 (2018)
  11. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Herzner AM, Hagmann CA, Goldeck M, Wolter S, Kübler K, Wittmann S, Gramberg T, Andreeva L, Hopfner KP, Mertens C, Zillinger T, Jin T, Xiao TS, Bartok E, Coch C, Ackermann D, Hornung V, Ludwig J, Barchet W, Hartmann G, Schlee M. Nat Immunol 16 1025-1033 (2015)
  12. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Vincent J, Adura C, Gao P, Luz A, Lama L, Asano Y, Okamoto R, Imaeda T, Aida J, Rothamel K, Gogakos T, Steinberg J, Reasoner S, Aso K, Tuschl T, Patel DJ, Glickman JF, Ascano M. Nat Commun 8 750 (2017)
  13. Acetylation Blocks cGAS Activity and Inhibits Self-DNA-Induced Autoimmunity. Dai J, Huang YJ, He X, Zhao M, Wang X, Liu ZS, Xue W, Cai H, Zhan XY, Huang SY, He K, Wang H, Wang N, Sang Z, Li T, Han QY, Mao J, Diao X, Song N, Chen Y, Li WH, Man JH, Li AL, Zhou T, Liu ZG, Zhang XM, Li T. Cell 176 1447-1460.e14 (2019)
  14. cGAS is activated by DNA in a length-dependent manner. Luecke S, Holleufer A, Christensen MH, Jønsson KL, Boni GA, Sørensen LK, Johannsen M, Jakobsen MR, Hartmann R, Paludan SR. EMBO Rep 18 1707-1715 (2017)
  15. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Burroughs AM, Zhang D, Schäffer DE, Iyer LM, Aravind L. Nucleic Acids Res 43 10633-10654 (2015)
  16. Species-Specific Deamidation of cGAS by Herpes Simplex Virus UL37 Protein Facilitates Viral Replication. Zhang J, Zhao J, Xu S, Li J, He S, Zeng Y, Xie L, Xie N, Liu T, Lee K, Seo GJ, Chen L, Stabell AC, Xia Z, Sawyer SL, Jung J, Huang C, Feng P. Cell Host Microbe 24 234-248.e5 (2018)
  17. PQBP1 Is a Proximal Sensor of the cGAS-Dependent Innate Response to HIV-1. Yoh SM, Schneider M, Seifried J, Soonthornvacharin S, Akleh RE, Olivieri KC, De Jesus PD, Ruan C, de Castro E, Ruiz PA, Germanaud D, des Portes V, García-Sastre A, König R, Chanda SK. Cell 161 1293-1305 (2015)
  18. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. Klarquist J, Hennies CM, Lehn MA, Reboulet RA, Feau S, Janssen EM. J Immunol 193 6124-6134 (2014)
  19. Antitumor Activity of cGAMP via Stimulation of cGAS-cGAMP-STING-IRF3 Mediated Innate Immune Response. Li T, Cheng H, Yuan H, Xu Q, Shu C, Zhang Y, Xu P, Tan J, Rui Y, Li P, Tan X. Sci Rep 6 19049 (2016)
  20. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Konno H, Yamauchi S, Berglund A, Putney RM, Mulé JJ, Barber GN. Oncogene 37 2037-2051 (2018)
  21. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Seo GJ, Kim C, Shin WJ, Sklan EH, Eoh H, Jung JU. Nat Commun 9 613 (2018)
  22. Structural mechanism of cGAS inhibition by the nucleosome. Pathare GR, Decout A, Glück S, Cavadini S, Makasheva K, Hovius R, Kempf G, Weiss J, Kozicka Z, Guey B, Melenec P, Fierz B, Thomä NH, Ablasser A. Nature 587 668-672 (2020)
  23. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Wu X, Wu FH, Wang X, Wang L, Siedow JN, Zhang W, Pei ZM. Nucleic Acids Res 42 8243-8257 (2014)
  24. The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism. Bai J, Liu F. Diabetes 68 1099-1108 (2019)
  25. Structural basis of nucleosome-dependent cGAS inhibition. Boyer JA, Spangler CJ, Strauss JD, Cesmat AP, Liu P, McGinty RK, Zhang Q. Science 370 450-454 (2020)
  26. Structural basis for the inhibition of cGAS by nucleosomes. Kujirai T, Zierhut C, Takizawa Y, Kim R, Negishi L, Uruma N, Hirai S, Funabiki H, Kurumizaka H. Science 370 455-458 (2020)
  27. Structural basis for sequestration and autoinhibition of cGAS by chromatin. Michalski S, de Oliveira Mann CC, Stafford CA, Witte G, Bartho J, Lammens K, Hornung V, Hopfner KP. Nature 587 678-682 (2020)
  28. The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response. Wang Q, Huang L, Hong Z, Lv Z, Mao Z, Tang Y, Kong X, Li S, Cui Y, Liu H, Zhang L, Zhang X, Jiang L, Wang C, Zhou Q. PLoS Pathog 13 e1006264 (2017)
  29. Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Xie W, Lama L, Adura C, Tomita D, Glickman JF, Tuschl T, Patel DJ. Proc Natl Acad Sci U S A 116 11946-11955 (2019)
  30. Structure-guided reprogramming of human cGAS dinucleotide linkage specificity. Kranzusch PJ, Lee ASY, Wilson SC, Solovykh MS, Vance RE, Berger JM, Doudna JA. Cell 158 1011-1021 (2014)
  31. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Li T, Huang T, Du M, Chen X, Du F, Ren J, Chen ZJ. Science 371 eabc5386 (2021)
  32. ZCCHC3 is a co-sensor of cGAS for dsDNA recognition in innate immune response. Lian H, Wei J, Zang R, Ye W, Yang Q, Zhang XN, Chen YD, Fu YZ, Hu MM, Lei CQ, Luo WW, Li S, Shu HB. Nat Commun 9 3349 (2018)
  33. HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity. Ye Q, Lau RK, Mathews IT, Birkholz EA, Watrous JD, Azimi CS, Pogliano J, Jain M, Corbett KD. Mol Cell 77 709-722.e7 (2020)
  34. SENP7 Potentiates cGAS Activation by Relieving SUMO-Mediated Inhibition of Cytosolic DNA Sensing. Cui Y, Yu H, Zheng X, Peng R, Wang Q, Zhou Y, Wang R, Wang J, Qu B, Shen N, Guo Q, Liu X, Wang C. PLoS Pathog 13 e1006156 (2017)
  35. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Zhou W, Mohr L, Maciejowski J, Kranzusch PJ. Mol Cell 81 739-755.e7 (2021)
  36. cGAS-like receptors sense RNA and control 3'2'-cGAMP signalling in Drosophila. Slavik KM, Morehouse BR, Ragucci AE, Zhou W, Ai X, Chen Y, Li L, Wei Z, Bähre H, König M, Seifert R, Lee ASY, Cai H, Imler JL, Kranzusch PJ. Nature 597 109-113 (2021)
  37. cGAS suppresses genomic instability as a decelerator of replication forks. Chen H, Chen H, Zhang J, Wang Y, Simoneau A, Yang H, Levine AS, Zou L, Chen Z, Lan L. Sci Adv 6 eabb8941 (2020)
  38. Overlapping Patterns of Rapid Evolution in the Nucleic Acid Sensors cGAS and OAS1 Suggest a Common Mechanism of Pathogen Antagonism and Escape. Hancks DC, Hartley MK, Hagan C, Clark NL, Elde NC. PLoS Genet 11 e1005203 (2015)
  39. cGAS-mediated autophagy protects the liver from ischemia-reperfusion injury independently of STING. Lei Z, Deng M, Yi Z, Sun Q, Shapiro RA, Xu H, Li T, Loughran PA, Griepentrog JE, Huang H, Scott MJ, Huang F, Billiar TR. Am J Physiol Gastrointest Liver Physiol 314 G655-G667 (2018)
  40. DNA-PK deficiency potentiates cGAS-mediated antiviral innate immunity. Sun X, Liu T, Zhao J, Xia H, Xie J, Guo Y, Zhong L, Li M, Yang Q, Peng C, Rouvet I, Belot A, Shu HB, Feng P, Zhang J. Nat Commun 11 6182 (2020)
  41. Nonspecific DNA Binding of cGAS N Terminus Promotes cGAS Activation. Tao J, Zhang XW, Jin J, Du XX, Lian T, Yang J, Zhou X, Jiang Z, Su XD. J Immunol 198 3627-3636 (2017)
  42. Structural basis for nucleosome-mediated inhibition of cGAS activity. Cao D, Han X, Fan X, Xu RM, Zhang X. Cell Res 30 1088-1097 (2020)
  43. Diminished Innate Antiviral Response to Adenovirus Vectors in cGAS/STING-Deficient Mice Minimally Impacts Adaptive Immunity. Anghelina D, Lam E, Falck-Pedersen E. J Virol 90 5915-5927 (2016)
  44. The allosteric activation of cGAS underpins its dynamic signaling landscape. Hooy RM, Sohn J. Elife 7 e39984 (2018)
  45. Histone H2B-IFI16 Recognition of Nuclear Herpesviral Genome Induces Cytoplasmic Interferon-β Responses. Iqbal J, Ansari MA, Kumar B, Dutta D, Roy A, Chikoti L, Pisano G, Dutta S, Vahedi S, Veettil MV, Chandran B. PLoS Pathog 12 e1005967 (2016)
  46. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING. Shi H, Wu J, Chen ZJ, Chen C. Proc Natl Acad Sci U S A 112 8947-8952 (2015)
  47. UV Light Potentiates STING (Stimulator of Interferon Genes)-dependent Innate Immune Signaling through Deregulation of ULK1 (Unc51-like Kinase 1). Kemp MG, Lindsey-Boltz LA, Sancar A. J Biol Chem 290 12184-12194 (2015)
  48. STING activation promotes robust immune response and NK cell-mediated tumor regression in glioblastoma models. Berger G, Knelson EH, Jimenez-Macias JL, Nowicki MO, Han S, Panagioti E, Lizotte PH, Adu-Berchie K, Stafford A, Dimitrakakis N, Zhou L, Chiocca EA, Mooney DJ, Barbie DA, Lawler SE. Proc Natl Acad Sci U S A 119 e2111003119 (2022)
  49. Inhibition of hepatitis B virus replication by activation of the cGAS-STING pathway. He J, Hao R, Liu D, Liu X, Wu S, Guo S, Wang Y, Tien P, Guo D. J Gen Virol 97 3368-3378 (2016)
  50. Interactome and Proteome Dynamics Uncover Immune Modulatory Associations of the Pathogen Sensing Factor cGAS. Lum KK, Song B, Federspiel JD, Diner BA, Howard T, Cristea IM. Cell Syst 7 627-642.e6 (2018)
  51. PCV2 targets cGAS to inhibit type I interferon induction to promote other DNA virus infection. Wang Z, Chen J, Wu X, Ma D, Zhang X, Li R, Han C, Liu H, Yin X, Du Q, Tong D, Huang Y. PLoS Pathog 17 e1009940 (2021)
  52. Structural and biochemical characterization of the cell fate determining nucleotidyltransferase fold protein MAB21L1. de Oliveira Mann CC, Kiefersauer R, Witte G, Hopfner KP. Sci Rep 6 27498 (2016)
  53. Translation stress and collided ribosomes are co-activators of cGAS. Wan L, Juszkiewicz S, Blears D, Bajpe PK, Han Z, Faull P, Mitter R, Stewart A, Snijders AP, Hegde RS, Svejstrup JQ. Mol Cell 81 2808-2822.e10 (2021)
  54. The roles of interferon-inducible p200 family members IFI16 and p204 in innate immune responses, cell differentiation and proliferation. Zhao H, Gonzalezgugel E, Cheng L, Richbourgh B, Nie L, Liu C. Genes Dis 2 46-56 (2015)
  55. Dysfunctional telomeres trigger cellular senescence mediated by cyclic GMP-AMP synthase. Abdisalaam S, Bhattacharya S, Mukherjee S, Sinha D, Srinivasan K, Zhu M, Akbay EA, Sadek HA, Shay JW, Asaithamby A. J Biol Chem 295 11144-11160 (2020)
  56. Allosteric coupling between Mn2+ and dsDNA controls the catalytic efficiency and fidelity of cGAS. Hooy RM, Massaccesi G, Rousseau KE, Chattergoon MA, Sohn J. Nucleic Acids Res 48 4435-4447 (2020)
  57. DDX41 is required for cGAS-STING activation against DNA virus infection. Singh RS, Vidhyasagar V, Yang S, Arna AB, Yadav M, Aggarwal A, Aguilera AN, Shinriki S, Bhanumathy KK, Pandey K, Xu A, Rapin N, Bosch M, DeCoteau J, Xiang J, Vizeacoumar FJ, Zhou Y, Misra V, Matsui H, Ross SR, Wu Y. Cell Rep 39 110856 (2022)
  58. RNF111-facilitated neddylation potentiates cGAS-mediated antiviral innate immune response. Li C, Zhang L, Qian D, Cheng M, Hu H, Hong Z, Cui Y, Yu H, Wang Q, Zhu J, Meng W, Xu JF, Sun Y, Zhang P, Wang C. PLoS Pathog 17 e1009401 (2021)
  59. Ring finger protein 166 potentiates RNA virus-induced interferon-β production via enhancing the ubiquitination of TRAF3 and TRAF6. Chen HW, Yang YK, Xu H, Yang WW, Zhai ZH, Chen DY. Sci Rep 5 14770 (2015)
  60. cGAS-mediated control of blood-stage malaria promotes Plasmodium-specific germinal center responses. Hahn WO, Butler NS, Lindner SE, Akilesh HM, Sather DN, Kappe SH, Hamerman JA, Gale M, Liles WC, Pepper M. JCI Insight 3 94142 (2018)
  61. A TRAF3-NIK module differentially regulates DNA vs RNA pathways in innate immune signaling. Parvatiyar K, Pindado J, Dev A, Aliyari SR, Zaver SA, Gerami H, Chapon M, Ghaffari AA, Dhingra A, Cheng G. Nat Commun 9 2770 (2018)
  62. PCBP1 modulates the innate immune response by facilitating the binding of cGAS to DNA. Liao CY, Lei CQ, Shu HB. Cell Mol Immunol 18 2334-2343 (2021)
  63. Single amino acid change in STING leads to constitutive active signaling. Tang ED, Wang CY. PLoS One 10 e0120090 (2015)
  64. Structural Basis for the Catalytic Mechanism of DncV, Bacterial Homolog of Cyclic GMP-AMP Synthase. Kato K, Ishii R, Hirano S, Ishitani R, Nureki O. Structure 23 843-850 (2015)
  65. cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. Zang N, Cui C, Guo X, Song J, Hu H, Yang M, Xu M, Wang L, Hou X, He Q, Sun Z, Wang C, Chen L. iScience 25 105145 (2022)
  66. Activation of cGAS/STING pathway upon paramyxovirus infection. Iampietro M, Dumont C, Mathieu C, Spanier J, Robert J, Charpenay A, Dupichaud S, Dhondt KP, Aurine N, Pelissier R, Ferren M, Mély S, Gerlier D, Kalinke U, Horvat B. iScience 24 102519 (2021)
  67. Cooperative DNA binding mediated by KicGAS/ORF52 oligomerization allows inhibition of DNA-induced phase separation and activation of cGAS. Bhowmik D, Du M, Tian Y, Ma S, Wu J, Chen Z, Yin Q, Zhu F. Nucleic Acids Res 49 9389-9403 (2021)
  68. Varicella-Zoster virus ORF9 is an antagonist of the DNA sensor cGAS. Hertzog J, Zhou W, Fowler G, Rigby RE, Bridgeman A, Blest HT, Cursi C, Chauveau L, Davenne T, Warner BE, Kinchington PR, Kranzusch PJ, Rehwinkel J. EMBO J 41 e109217 (2022)
  69. Activation of Stimulator of IFN Genes (STING) Causes Proteinuria and Contributes to Glomerular Diseases. Mitrofanova A, Fontanella A, Tolerico M, Mallela S, Molina David J, Zuo Y, Boulina M, Kim JJ, Santos J, Ge M, Ge M, Sloan A, Issa W, Gurumani M, Pressly J, Ito M, Kretzler M, Eddy S, Nelson R, Merscher S, Burke G, Fornoni A. J Am Soc Nephrol 33 2153-2173 (2022)
  70. ZDHHC18 negatively regulates cGAS-mediated innate immunity through palmitoylation. Shi C, Yang X, Liu Y, Li H, Chu H, Li G, Yin H. EMBO J 41 e109272 (2022)
  71. A Bibliometric Analysis of the Innate Immune DNA Sensing cGAS-STING Pathway from 2013 to 2021. Shi X, Wang S, Wu Y, Li Q, Zhang T, Min K, Feng D, Liu M, Wei J, Zhu L, Mo W, Xiao Z, Yang H, Chen Y, Lv X. Front Immunol 13 916383 (2022)
  72. Small molecule inhibition of human cGAS reduces total cGAMP output and cytokine expression in cells. Wiser C, Kim B, Vincent J, Ascano M. Sci Rep 10 7604 (2020)
  73. Structural and biochemical characterization of human Schlafen 5. Metzner FJ, Huber E, Hopfner KP, Lammens K. Nucleic Acids Res 50 1147-1161 (2022)
  74. cGAS/STING/TBK1/IRF3 Signaling Pathway Activates BMDCs Maturation Following Mycobacterium bovis Infection. Li Q, Liu C, Yue R, El-Ashram S, Wang J, He X, Zhao D, Zhou X, Xu L. Int J Mol Sci 20 E895 (2019)
  75. Cellular uptake of extracellular nucleosomes induces innate immune responses by binding and activating cGMP-AMP synthase (cGAS). Wang H, Zang C, Ren M, Shang M, Wang Z, Peng X, Zhang Q, Wen X, Xi Z, Zhou C. Sci Rep 10 15385 (2020)
  76. Elucidating Complicated Assembling Systems in Biology Using Size-and-Shape Analysis of Sedimentation Velocity Data. Chaton CT, Herr AB. Methods Enzymol 562 187-204 (2015)
  77. Catalytic Promiscuity of cGAS: A Facile Enzymatic Synthesis of 2'-3'-Linked Cyclic Dinucleotides. Rosenthal K, Becker M, Rolf J, Siedentop R, Hillen M, Nett M, Lütz S. Chembiochem 21 3225-3228 (2020)
  78. The intracellular DNA sensors cGAS and IFI16 do not mediate effective antiviral immune responses to HSV-1 in human microglial cells. Jeffries AM, Nitika, Truman AW, Marriott I. J Neurovirol 26 544-555 (2020)
  79. Compound C Reducing Interferon Expression by Inhibiting cGAMP Accumulation. Lai J, Luo X, Tian S, Zhang X, Huang S, Wang H, Li Q, Cai S, Chen Q. Front Pharmacol 11 88 (2020)
  80. Human papillomaviruses sensitize cells to DNA damage induced apoptosis by targeting the innate immune sensor cGAS. Gusho E, Laimins LA. PLoS Pathog 18 e1010725 (2022)
  81. Loss of STING expression is prognostic in non-small cell lung cancer. Lohinai Z, Dora D, Caldwell C, Rivard CJ, Suda K, Yu H, Rivalland G, Ellison K, Rozeboom L, Dziadziuszko R, Mitchell P, John T, Millan IS, Ren S, Hirsch FR. J Surg Oncol 125 1042-1052 (2022)
  82. PCBP2 maintains antiviral signaling homeostasis by regulating cGAS enzymatic activity via antagonizing its condensation. Gu H, Yang J, Zhang J, Song Y, Zhang Y, Xu P, Zhu Y, Wang L, Zhang P, Li L, Chen D, Sun Q. Nat Commun 13 1564 (2022)
  83. The E3 ubiquitin ligase ARIH1 promotes antiviral immunity and autoimmunity by inducing mono-ISGylation and oligomerization of cGAS. Xiong TC, Wei MC, Li FX, Shi M, Gan H, Tang Z, Dong HP, Liuyu T, Gao P, Zhong B, Zhang ZD, Lin D. Nat Commun 13 5973 (2022)
  84. Post-translational modification control of viral DNA sensors and innate immune signaling. Song B, Liu D, Greco TM, Cristea IM. Adv Virus Res 109 163-199 (2021)
  85. The N terminus of cGAS de-oligomerizes the cGAS:DNA complex and lifts the DNA size restriction of core-cGAS activity. Lee A, Park EB, Lee J, Choi BS, Kang SJ. FEBS Lett 591 954-961 (2017)
  86. Transcriptomic response to Yersinia pestis: RIG-I like receptor signaling response is detrimental to the host against plague. Du Z, Yang H, Tan Y, Tian G, Zhang Q, Cui Y, Yanfeng Yan, Wu X, Chen Z, Cao S, Bi Y, Han Y, Wang X, Song Y, Yang R. J Genet Genomics 41 379-396 (2014)
  87. Efficient Induction of Cytotoxic T Cells by Viral Vector Vaccination Requires STING-Dependent DC Functions. Barnowski C, Ciupka G, Tao R, Jin L, Busch DH, Tao S, Drexler I. Front Immunol 11 1458 (2020)
  88. Can the cGAS-STING Pathway Play a Role in the Dry Eye? Ouyang W, Wang S, Hu J, Liu Z. Front Immunol 13 929230 (2022)
  89. Comprehensive Mutagenesis of Herpes Simplex Virus 1 Genome Identifies UL42 as an Inhibitor of Type I Interferon Induction. Chapon M, Parvatiyar K, Aliyari SR, Zhao JS, Cheng G. J Virol 93 e01446-19 (2019)
  90. Harnessing DNA for immunotherapy: Cancer, infectious diseases, and beyond. Wang Y, Chen-Mayfield TJ, Li Z, Younis MH, Cai W, Hu Q. Adv Funct Mater 32 2112273 (2022)
  91. Recent progress on the activation of the cGAS-STING pathway and its regulation by biomolecular condensation. Yu X, Zhao Z, Jiang Z. J Mol Cell Biol 14 mjac042 (2022)
  92. The cGAS/STING signaling pathway: a cross-talk of infection, senescence and tumors. Zeng PH, Yin WJ. Cell Cycle 22 38-56 (2023)
  93. Research Support, Non-U.S. Gov't cGAS in nucleus: The link between immune response and DNA damage repair. Song JX, Villagomes D, Zhao H, Zhu M. Front Immunol 13 1076784 (2022)
  94. m6A methylation potentiates cytosolic dsDNA recognition in a sequence-specific manner. Balzarolo M, Engels S, de Jong AJ, Franke K, van den Berg TK, Gulen MF, Ablasser A, Janssen EM, van Steensel B, Wolkers MC. Open Biol 11 210030 (2021)
  95. Discovery and characterization of a novel cGAS covalent inhibitor for the treatment of inflammatory bowel disease. Song J, Yang RR, Chang J, Liu YD, Lu CH, Chen LF, Guo H, Zhang YH, Fan ZS, Zhou JY, Zhou GZ, Zhang KK, Luo XM, Chen KX, Jiang HL, Zhang SL, Zheng MY. Acta Pharmacol Sin 44 791-800 (2023)
  96. Mechanisms of phase-separation-mediated cGAS activation revealed by dcFCCS. Yao Y, Wang W, Chen C. PNAS Nexus 1 pgac109 (2022)
  97. Phase separation focuses DNA sensing. Ablasser A. Science 361 646-647 (2018)
  98. USP15 promotes cGAS activation through deubiquitylation and liquid condensation. Shi C, Yang X, Hou Y, Jin X, Guo L, Zhou Y, Zhang C, Yin H. Nucleic Acids Res 50 11093-11108 (2022)
  99. 10th anniversary of discovering cGAMP: synthesis and beyond. Chen C. Org Chem Front 10 1086-1098 (2023)
  100. Asymmetric arginine dimethylation of cytosolic RNA and DNA sensors by PRMT3 attenuates antiviral innate immunity. Zhu J, Li X, Cai X, Zhou Z, Liao Q, Liu X, Wang J, Xiao W. Proc Natl Acad Sci U S A 120 e2214956120 (2023)
  101. Control of STING Agonistic/Antagonistic Activity Using Amine-Skeleton-Based c-di-GMP Analogues. Yanase Y, Tsuji G, Nakamura M, Shibata N, Demizu Y. Int J Mol Sci 23 6847 (2022)
  102. Pseudomonas aeruginosa Induces Interferon-β Production to Promote Intracellular Survival. Yang L, Zhang YW, Liu Y, Xie YZ, Weng D, Ge BX, Liu HP, Xu JF. Microbiol Spectr 10 e0155022 (2022)
  103. Reading the fine print: sequence-specific activation of cGAS. Chiang JJ, Gack MU. Nat Immunol 16 1009-1010 (2015)
  104. STING-pathway modulation to enhance the immunogenicity of adenoviral-vectored vaccines. Padron-Regalado E, Ulaszewska M, Douglas AD, Hill AVS, Spencer AJ. Sci Rep 12 14464 (2022)
  105. Spinal TAOK2 contributes to neuropathic pain via cGAS-STING activation in rats. Zhang H, Li A, Liu YF, Sun ZM, Jin BX, Lin JP, Yang Y, Yao YX. iScience 26 107792 (2023)
  106. African Swine Fever Virus Host-Pathogen Interactions. Netherton CL, Shimmon GL, Hui JYK, Connell S, Reis AL. Subcell Biochem 106 283-331 (2023)
  107. African swine fever virus QP383R dampens type I interferon production by promoting cGAS palmitoylation. Hao S, Zheng X, Zhu Y, Yao Y, Li S, Xu Y, Feng WH. Front Immunol 14 1186916 (2023)
  108. CD-NTase family member MB21D2 promotes cGAS-mediated antiviral and antitumor immunity. Liu H, Yan Z, Zhu D, Xu H, Liu F, Chen T, Zhang H, Zheng Y, Liu B, Zhang L, Zhao W, Gao C. Cell Death Differ 30 992-1004 (2023)
  109. Development of cyclopeptide inhibitors of cGAS targeting protein-DNA interaction and phase separation. Wang X, Wang Y, Cao A, Luo Q, Chen D, Zhao W, Xu J, Li Q, Bu X, Quan J. Nat Commun 14 6132 (2023)
  110. Keeping your armour intact: how HIV-1 evades detection by the innate immune system: HIV-1 capsid controls detection of reverse transcription products by the cytosolic DNA sensor cGAS. Maelfait J, Seiradake E, Rehwinkel J. Bioessays 36 649-657 (2014)
  111. Mitochondrial E3 ligase MARCH5 is a safeguard against DNA-PKcs-mediated immune signaling in mitochondria-damaged cells. Heo J, Park YJ, Kim Y, Lee HS, Kim J, Kwon SH, Kang MG, Rhee HW, Sun W, Lee JH, Cho H. Cell Death Dis 14 788 (2023)
  112. RU.521 mitigates subarachnoid hemorrhage-induced brain injury via regulating microglial polarization and neuroinflammation mediated by the cGAS/STING/NF-κB pathway. Shao J, Meng Y, Yuan K, Wu Q, Zhu S, Li Y, Wu P, Zheng J, Shi H. Cell Commun Signal 21 264 (2023)
  113. The proto-oncogene SRC phosphorylates cGAS to inhibit an antitumor immune response. Dunker W, Zaver SA, Pineda JMB, Howard CJ, Bradley RK, Woodward JJ. JCI Insight 8 e167270 (2023)