4oeb Citations

Conformational changes during pore formation by the perforin-related protein pleurotolysin.

Abstract

Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function.

Reviews - 4oeb mentioned but not cited (1)

  1. What Can Mushroom Proteins Teach Us about Lipid Rafts? Grundner M, Panevska A, Sepčić K, Skočaj M. Membranes (Basel) 11 264 (2021)

Articles - 4oeb mentioned but not cited (4)

  1. Molecular Discrimination between Two Conformations of Sphingomyelin in Plasma Membranes. Endapally S, Frias D, Grzemska M, Gay A, Tomchick DR, Radhakrishnan A. Cell 176 1040-1053.e17 (2019)
  2. Crystal structure of RahU, an aegerolysin protein from the human pathogen Pseudomonas aeruginosa, and its interaction with membrane ceramide phosphorylethanolamine. Kočar E, Lenarčič T, Hodnik V, Panevska A, Huang Y, Bajc G, Kostanjšek R, Naren AP, Maček P, Anderluh G, Sepčić K, Podobnik M, Butala M. Sci Rep 11 6572 (2021)
  3. Assembly dynamics and structure of an aegerolysin, ostreolysin A6. Yilmaz N, Panevska A, Tomishige N, Richert L, Mély Y, Sepčić K, Greimel P, Kobayashi T. J Biol Chem 299 104940 (2023)
  4. Lipid-Binding Aegerolysin from Biocontrol Fungus Beauveria bassiana. Kraševec N, Panevska A, Lemež Š, Razinger J, Sepčić K, Anderluh G, Podobnik M. Toxins (Basel) 13 820 (2021)


Reviews citing this publication (26)

  1. Pore-forming toxins: ancient, but never really out of fashion. Dal Peraro M, van der Goot FG. Nat. Rev. Microbiol. 14 77-92 (2016)
  2. The Unique Molecular Choreography of Giant Pore Formation by the Cholesterol-Dependent Cytolysins of Gram-Positive Bacteria. Tweten RK, Hotze EM, Wade KR. Annu. Rev. Microbiol. 69 323-340 (2015)
  3. The membrane attack complex, perforin and cholesterol-dependent cytolysin superfamily of pore-forming proteins. Lukoyanova N, Hoogenboom BW, Saibil HR. J. Cell. Sci. 129 2125-2133 (2016)
  4. The mystery behind membrane insertion: a review of the complement membrane attack complex. Bayly-Jones C, Bubeck D, Dunstone MA. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372 (2017)
  5. Cryo-electron Microscopy Analysis of Structurally Heterogeneous Macromolecular Complexes. Jonić S. Comput Struct Biotechnol J 14 385-390 (2016)
  6. Pore-forming toxins in Cnidaria. Podobnik M, Anderluh G. Semin. Cell Dev. Biol. 72 133-141 (2017)
  7. Advances in cryoEM and its impact on β-pore forming proteins. Boyd CM, Bubeck D. Curr Opin Struct Biol 52 41-49 (2018)
  8. Atomic force microscopy of membrane pore formation by cholesterol dependent cytolysins. Hodel AW, Leung C, Dudkina NV, Saibil HR, Hoogenboom BW. Curr. Opin. Struct. Biol. 39 8-15 (2016)
  9. Computational methods for analyzing conformational variability of macromolecular complexes from cryo-electron microscopy images. Jonić S. Curr. Opin. Struct. Biol. 43 114-121 (2017)
  10. Killing of Microbes and Cancer by the Immune System with Three Mammalian Pore-Forming Killer Proteins. Podack ER, Munson GP. Front Immunol 7 464 (2016)
  11. Principles for Integrative Structural Biology Studies. Rout MP, Sali A. Cell 177 1384-1403 (2019)
  12. The Apicomplexan CDC/MACPF-like pore-forming proteins. Wade KR, Tweten RK. Curr. Opin. Microbiol. 26 48-52 (2015)
  13. Repurposing a pore: highly conserved perforin-like proteins with alternative mechanisms. Ni T, Gilbert RJC. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372 (2017)
  14. Beyond pore formation: reorganization of the plasma membrane induced by pore-forming proteins. Kulma M, Anderluh G. Cell Mol Life Sci 78 6229-6249 (2021)
  15. Aegerolysins: Lipid-binding proteins with versatile functions. Butala M, Novak M, Kraševec N, Skočaj M, Veranič P, Maček P, Sepčić K. Semin. Cell Dev. Biol. 72 142-151 (2017)
  16. Ancient but Not Forgotten: New Insights Into MPEG1, a Macrophage Perforin-Like Immune Effector. Bayly-Jones C, Pang SS, Spicer BA, Whisstock JC, Dunstone MA. Front Immunol 11 581906 (2020)
  17. Challenges and approaches to studying pore-forming proteins. Benton JT, Bayly-Jones C. Biochem Soc Trans 49 2749-2765 (2021)
  18. Cryo-electron tomography: an ideal method to study membrane-associated proteins. Dunstone MA, de Marco A. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372 (2017)
  19. Integrative modelling of cellular assemblies. Joseph AP, Polles G, Alber F, Topf M. Curr. Opin. Struct. Biol. 46 102-109 (2017)
  20. MACPF/CDC proteins in development: Insights from Drosophila torso-like. Johnson TK, Henstridge MA, Warr CG. Semin. Cell Dev. Biol. 72 163-170 (2017)
  21. Perforin-A key (shaped) weapon in the immunological arsenal. Spicer BA, Conroy PJ, Law RHP, Voskoboinik I, Whisstock JC. Semin. Cell Dev. Biol. 72 117-123 (2017)
  22. Towards Understanding the Function of Aegerolysins. Kraševec N, Skočaj M. Toxins (Basel) 14 629 (2022)
  23. Advances in structure determination by cryo-EM to unravel membrane-spanning pore formation. Scott H, Huang W, Bann JG, Taylor DJ. Protein Sci. 27 1544-1556 (2018)
  24. Automated Modeling and Validation of Protein Complexes in Cryo-EM Maps. Cragnolini T, Sweeney A, Topf M. Methods Mol Biol 2215 189-223 (2021)
  25. Ostreolysin A/Pleurotolysin B and Equinatoxins: Structure, Function and Pathophysiological Effects of These Pore-Forming Proteins. Frangež R, Šuput D, Molgó J, Benoit E. Toxins (Basel) 9 (2017)
  26. Perforin-Like Proteins of Apicomplexan Parasites. Sassmannshausen J, Pradel G, Bennink S. Front Cell Infect Microbiol 10 578883 (2020)

Articles citing this publication (44)

  1. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Nat Commun 8 14128 (2017)
  2. Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. Sali A, Berman HM, Schwede T, Trewhella J, Kleywegt G, Burley SK, Markley J, Nakamura H, Adams P, Bonvin AM, Chiu W, Peraro MD, Di Maio F, Ferrin TE, Grünewald K, Gutmanas A, Henderson R, Hummer G, Iwasaki K, Johnson G, Lawson CL, Meiler J, Marti-Renom MA, Montelione GT, Nilges M, Nussinov R, Patwardhan A, Rappsilber J, Read RJ, Saibil H, Schröder GF, Schwieters CD, Seidel CA, Svergun D, Topf M, Ulrich EL, Velankar S, Westbrook JD. Structure 23 1156-1167 (2015)
  3. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. Leung C, Dudkina NV, Lukoyanova N, Hodel AW, Farabella I, Pandurangan AP, Jahan N, Pires Damaso M, Osmanović D, Reboul CF, Dunstone MA, Andrew PW, Lonnen R, Topf M, Saibil HR, Hoogenboom BW. Elife 3 e04247 (2014)
  4. Structure of the poly-C9 component of the complement membrane attack complex. Dudkina NV, Spicer BA, Reboul CF, Conroy PJ, Lukoyanova N, Elmlund H, Law RH, Ekkel SM, Kondos SC, Goode RJ, Ramm G, Whisstock JC, Saibil HR, Dunstone MA. Nat Commun 7 10588 (2016)
  5. TEMPy: a Python library for assessment of three-dimensional electron microscopy density fits. Farabella I, Vasishtan D, Joseph AP, Pandurangan AP, Sahota H, Topf M. J Appl Crystallogr 48 1314-1323 (2015)
  6. Refinement of atomic models in high resolution EM reconstructions using Flex-EM and local assessment. Joseph AP, Malhotra S, Burnley T, Wood C, Clare DK, Winn M, Topf M. Methods 100 42-49 (2016)
  7. Stonefish toxin defines an ancient branch of the perforin-like superfamily. Ellisdon AM, Reboul CF, Panjikar S, Huynh K, Oellig CA, Winter KL, Dunstone MA, Hodgson WC, Seymour J, Dearden PK, Tweten RK, Whisstock JC, McGowan S. Proc. Natl. Acad. Sci. U.S.A. 112 15360-15365 (2015)
  8. Real-time visualization of perforin nanopore assembly. Leung C, Hodel AW, Brennan AJ, Lukoyanova N, Tran S, House CM, Kondos SC, Whisstock JC, Dunstone MA, Trapani JA, Voskoboinik I, Saibil HR, Hoogenboom BW. Nat Nanotechnol 12 467-473 (2017)
  9. Comparative and transcriptional analysis of the predicted secretome in the lignocellulose-degrading basidiomycete fungus Pleurotus ostreatus. Alfaro M, Castanera R, Lavín JL, Grigoriev IV, Oguiza JA, Ramírez L, Pisabarro AG. Environ. Microbiol. 18 4710-4726 (2016)
  10. Structure of astrotactin-2: a conserved vertebrate-specific and perforin-like membrane protein involved in neuronal development. Ni T, Harlos K, Gilbert R. Open Biol 6 (2016)
  11. The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures. Andreeva A, Kulesha E, Gough J, Murzin AG. Nucleic Acids Res 48 D376-D382 (2020)
  12. Evaluation of aegerolysins as novel tools to detect and visualize ceramide phosphoethanolamine, a major sphingolipid in invertebrates. Bhat HB, Ishitsuka R, Inaba T, Murate M, Abe M, Makino A, Kohyama-Koganeya A, Nagao K, Kurahashi A, Kishimoto T, Tahara M, Yamano A, Nagamune K, Hirabayashi Y, Juni N, Umeda M, Fujimori F, Nishibori K, Yamaji-Hasegawa A, Greimel P, Kobayashi T. FASEB J. 29 3920-3934 (2015)
  13. Measuring kinetic drivers of pneumolysin pore structure. Gilbert RJ, Sonnen AF. Eur. Biophys. J. 45 365-376 (2016)
  14. Single-particle electron microscopy in the study of membrane protein structure. De Zorzi R, Mi W, Liao M, Walz T. Microscopy (Oxf) 65 81-96 (2016)
  15. Mechanism of membrane pore formation by human gasdermin-D. Mulvihill E, Sborgi L, Mari SA, Pfreundschuh M, Hiller S, Müller DJ. EMBO J. 37 (2018)
  16. Structure and mechanism of the two-component α-helical pore-forming toxin YaxAB. Bräuning B, Bertosin E, Praetorius F, Ihling C, Schatt A, Adler A, Richter K, Sinz A, Dietz H, Groll M. Nat Commun 9 1806 (2018)
  17. Improved metrics for comparing structures of macromolecular assemblies determined by 3D electron-microscopy. Joseph AP, Lagerstedt I, Patwardhan A, Topf M, Winn M. J. Struct. Biol. 199 12-26 (2017)
  18. The first transmembrane region of complement component-9 acts as a brake on its self-assembly. Spicer BA, Law RHP, Caradoc-Davies TT, Ekkel SM, Bayly-Jones C, Pang SS, Conroy PJ, Ramm G, Radjainia M, Venugopal H, Whisstock JC, Dunstone MA. Nat Commun 9 3266 (2018)
  19. CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers. Menny A, Serna M, Boyd CM, Gardner S, Joseph AP, Morgan BP, Topf M, Brooks NJ, Bubeck D. Nat Commun 9 5316 (2018)
  20. Unconventional Secretion of Nigerolysins A from Aspergillus Species. Kraševec N, Novak M, Barat S, Skočaj M, Sepčić K, Anderluh G. Microorganisms 8 E1973 (2020)
  21. Ceramide Aminoethylphosphonate as a New Molecular Target for Pore-Forming Aegerolysin-Based Protein Complexes. Balbi T, Trenti F, Panevska A, Bajc G, Guella G, Ciacci C, Canonico B, Canesi L, Sepčić K. Front Mol Biosci 9 902706 (2022)
  22. Lipid specificity of the immune effector perforin. Hodel AW, Rudd-Schmidt JA, Trapani JA, Voskoboinik I, Hoogenboom BW. Faraday Discuss 232 236-255 (2021)
  23. Ostreolysin A and anthrolysin O use different mechanisms to control movement of cholesterol from the plasma membrane to the endoplasmic reticulum. Johnson KA, Endapally S, Vazquez DC, Infante RE, Radhakrishnan A. J. Biol. Chem. 294 17289-17300 (2019)
  24. Perforin-2 clockwise hand-over-hand pre-pore to pore transition mechanism. Jiao F, Dehez F, Ni T, Yu X, Dittman JS, Gilbert R, Chipot C, Scheuring S. Nat Commun 13 5039 (2022)
  25. PlyAB Nanopores Detect Single Amino Acid Differences in Folded Haemoglobin from Blood. Huang G, Voorspoels A, Versloot RCA, van der Heide NJ, Carlon E, Willems K, Maglia G. Angew Chem Int Ed Engl 61 e202206227 (2022)
  26. Structures of monomeric and oligomeric forms of the Toxoplasma gondii perforin-like protein 1. Ni T, Williams SI, Rezelj S, Anderluh G, Harlos K, Stansfeld PJ, Gilbert RJC. Sci Adv 4 eaaq0762 (2018)
  27. Ceramide Phosphoethanolamine as a Possible Marker of Periodontal Disease. Grundner M, Munjaković H, Tori T, Sepčić K, Gašperšič R, Oblak Č, Seme K, Guella G, Trenti F, Skočaj M. Membranes (Basel) 12 655 (2022)
  28. Dissecting Out the Molecular Mechanism of Insecticidal Activity of Ostreolysin A6/Pleurotolysin B Complexes on Western Corn Rootworm. Milijaš Jotić M, Panevska A, Iacovache I, Kostanjšek R, Mravinec M, Skočaj M, Zuber B, Pavšič A, Razinger J, Modic Š, Trenti F, Guella G, Sepčić K. Toxins (Basel) 13 455 (2021)
  29. Effects of Bioinsecticidal Aegerolysin-Based Cytolytic Complexes on Non-Target Organisms. Panevska A, Glavan G, Jemec Kokalj A, Kukuljan V, Trobec T, Žužek MC, Vrecl M, Drobne D, Frangež R, Sepčić K. Toxins (Basel) 13 457 (2021)
  30. Electro-Osmotic Vortices Promote the Capture of Folded Proteins by PlyAB Nanopores. Huang G, Willems K, Bartelds M, van Dorpe P, Soskine M, Maglia G. Nano Lett 20 3819-3827 (2020)
  31. Piercing Fishes: Porin Expansion and Adaptation to Hematophagy in the Vampire Snail Cumia reticulata. Gerdol M, Cervelli M, Oliverio M, Modica MV. Mol. Biol. Evol. 35 2654-2668 (2018)
  32. The use of anthrolysin O and ostreolysin A to study cholesterol in cell membranes. Johnson KA, Radhakrishnan A. Methods Enzymol 649 543-566 (2021)
  33. A single point mutation expands the applicability of ostreolysin A6 in biomedicine. Panevska A, Čegovnik N, Fortuna K, Vukovič A, Grundner M, Modic Š, Bajc G, Skočaj M, Mravinec Bohte M, Popošek LL, Žigon P, Razinger J, Veranič P, Resnik N, Sepčić K. Sci Rep 13 2149 (2023)
  34. An Unsupervised Classification Algorithm for Heterogeneous Cryo-EM Projection Images Based on Autoencoders. Wang X, Lu Y, Lin X, Li J, Zhang Z. Int J Mol Sci 24 8380 (2023)
  35. Chimeric approach for narrowing a membrane-inserting region within human perforin. Neely AE, Mandigo KA, Robinson RL, Ness TL, Weiland MH. Protein Eng. Des. Sel. 30 105-111 (2017)
  36. Cryo-EM structure and B-factor refinement with ensemble representation. Beton JG, Mulvaney T, Cragnolini T, Topf M. Nat Commun 15 444 (2024)
  37. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Stud Mycol 104 1-85 (2023)
  38. Measuring and Manipulating Membrane Cholesterol for the Study of Hedgehog Signaling. Kinnebrew M, Johnson KA, Radhakrishnan A, Rohatgi R. Methods Mol Biol 2374 73-87 (2022)
  39. Pore-forming protein complexes from Pleurotus mushrooms kill western corn rootworm and Colorado potato beetle through targeting membrane ceramide phosphoethanolamine. Panevska A, Hodnik V, Skočaj M, Novak M, Modic Š, Pavlic I, Podržaj S, Zarić M, Resnik N, Maček P, Veranič P, Razinger J, Sepčić K. Sci Rep 9 5073 (2019)
  40. Structural basis for tuning activity and membrane specificity of bacterial cytolysins. Shah NR, Voisin TB, Parsons ES, Boyd CM, Hoogenboom BW, Bubeck D. Nat Commun 11 5818 (2020)
  41. Structural journey of an insecticidal protein against western corn rootworm. Marini G, Poland B, Leininger C, Lukoyanova N, Spielbauer D, Barry JK, Altier D, Lum A, Scolaro E, Ortega CP, Yalpani N, Sandahl G, Mabry T, Klever J, Nowatzki T, Zhao JZ, Sethi A, Kassa A, Crane V, Lu AL, Nelson ME, Eswar N, Topf M, Saibil HR. Nat Commun 14 4171 (2023)
  42. Structure-function characterization of an insecticidal protein GNIP1Aa, a member of an MACPF and β-tripod families. Zaitseva J, Vaknin D, Krebs C, Doroghazi J, Milam SL, Balasubramanian D, Duck NB, Freigang J. Proc. Natl. Acad. Sci. U.S.A. 116 2897-2906 (2019)
  43. The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1. Pang SS, Bayly-Jones C, Radjainia M, Spicer BA, Law RHP, Hodel AW, Parsons ES, Ekkel SM, Conroy PJ, Ramm G, Venugopal H, Bird PI, Hoogenboom BW, Voskoboinik I, Gambin Y, Sierecki E, Dunstone MA, Whisstock JC. Nat Commun 10 4288 (2019)
  44. The pore conformation of lymphocyte perforin. Ivanova ME, Lukoyanova N, Malhotra S, Topf M, Trapani JA, Voskoboinik I, Saibil HR. Sci Adv 8 eabk3147 (2022)