4zxl Citations

A mutant O-GlcNAcase as a probe to reveal global dynamics of protein O-GlcNAcylation during Drosophila embryonic development.

Abstract

O-GlcNAcylation is a reversible type of serine/threonine glycosylation on nucleocytoplasmic proteins in metazoa. Various genetic approaches in several animal models have revealed that O-GlcNAcylation is essential for embryogenesis. However, the dynamic changes in global O-GlcNAcylation and the underlying mechanistic biology linking them to embryonic development is not understood. One of the limiting factors towards characterizing changes in O-GlcNAcylation has been the limited specificity of currently available tools to detect this modification. In the present study, harnessing the unusual properties of an O-GlcNAcase (OGA) mutant that binds O-GlcNAc (O-N-acetylglucosamine) sites with nanomolar affinity, we uncover changes in protein O-GlcNAcylation as a function of Drosophila development.

Articles - 4zxl mentioned but not cited (1)

  1. A mutant O-GlcNAcase as a probe to reveal global dynamics of protein O-GlcNAcylation during Drosophila embryonic development. Mariappa D, Selvan N, Borodkin V, Alonso J, Ferenbach AT, Shepherd C, Navratilova IH, vanAalten DMF. Biochem J 470 255-262 (2015)


Reviews citing this publication (13)

  1. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Chatham JC, Zhang J, Wende AR. Physiol Rev 101 427-493 (2021)
  2. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Riley NM, Bertozzi CR, Pitteri SJ. Mol Cell Proteomics 20 100029 (2021)
  3. Towards structure-focused glycoproteomics. Chernykh A, Kawahara R, Thaysen-Andersen M. Biochem Soc Trans 49 161-186 (2021)
  4. An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase. Pravata VM, Omelková M, Stavridis MP, Desbiens CM, Stephen HM, Lefeber DJ, Gecz J, Gundogdu M, Õunap K, Joss S, Schwartz CE, Wells L, van Aalten DMF. Eur J Hum Genet 28 706-714 (2020)
  5. Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (O-GlcNAc). Zachara NE. FEBS Lett 592 3950-3975 (2018)
  6. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Saha A, Bello D, Fernández-Tejada A. Chem Soc Rev 50 10451-10485 (2021)
  7. Deciphering the Functions of Protein O-GlcNAcylation with Chemistry. Worth M, Li H, Jiang J. ACS Chem Biol 12 326-335 (2017)
  8. Structures and functions of invertebrate glycosylation. Zhu F, Li D, Chen K. Open Biol 9 180232 (2019)
  9. Methods for Enrichment and Assignment of N-Acetylglucosamine Modification Sites. Maynard JC, Chalkley RJ. Mol Cell Proteomics 20 100031 (2021)
  10. Molecular Interrogation to Crack the Case of O-GlcNAc. Estevez A, Zhu D, Blankenship C, Jiang J. Chemistry 26 12086-12100 (2020)
  11. Regulation of Polycomb Repression by O-GlcNAcylation: Linking Nutrition to Epigenetic Reprogramming in Embryonic Development and Cancer. Decourcelle A, Leprince D, Dehennaut V. Front Endocrinol (Lausanne) 10 117 (2019)
  12. Chemical and Biochemical Strategies To Explore the Substrate Recognition of O-GlcNAc-Cycling Enzymes. Hu CW, Worth M, Li H, Jiang J. Chembiochem 20 312-318 (2019)
  13. Molecular Mechanisms Linking Diabetes with Increased Risk of Thrombosis. Batten L, Sathyapalan T, Palmer TM. Int J Mol Sci 24 17465 (2023)

Articles citing this publication (9)

  1. Mutations in N-acetylglucosamine (O-GlcNAc) transferase in patients with X-linked intellectual disability. Willems AP, Gundogdu M, Kempers MJE, Giltay JC, Pfundt R, Elferink M, Loza BF, Fuijkschot J, Ferenbach AT, van Gassen KLI, van Aalten DMF, Lefeber DJ. J Biol Chem 292 12621-12631 (2017)
  2. A mutant O-GlcNAcase enriches Drosophila developmental regulators. Selvan N, Williamson R, Mariappa D, Campbell DG, Gourlay R, Ferenbach AT, Aristotelous T, Hopkins-Navratilova I, Trost M, van Aalten DMF. Nat Chem Biol 13 882-887 (2017)
  3. Loss of O-GlcNAcase catalytic activity leads to defects in mouse embryogenesis. Muha V, Authier F, Szoke-Kovacs Z, Johnson S, Gallagher J, McNeilly A, McCrimmon RJ, Teboul L, van Aalten DMF. J Biol Chem 296 100439 (2021)
  4. Effects of hypo-O-GlcNAcylation on Drosophila development. Mariappa D, Ferenbach AT, van Aalten DMF. J Biol Chem 293 7209-7221 (2018)
  5. O-GlcNAcase contributes to cognitive function in Drosophila. Muha V, Fenckova M, Ferenbach AT, Catinozzi M, Eidhof I, Storkebaum E, Schenck A, van Aalten DMF. J Biol Chem 295 8636-8646 (2020)
  6. AANL (Agrocybe aegerita lectin 2) is a new facile tool to probe for O-GlcNAcylation. Liu W, Han G, Yin Y, Jiang S, Yu G, Yang Q, Yu W, Ye X, Su Y, Yang Y, Hart GW, Sun H. Glycobiology 28 363-373 (2018)
  7. Loss of CRMP2 O-GlcNAcylation leads to reduced novel object recognition performance in mice. Muha V, Williamson R, Hills R, McNeilly AD, McWilliams TG, Alonso J, Schimpl M, Leney AC, Heck AJR, Sutherland C, Read KD, McCrimmon RJ, Brooks SP, van Aalten DMF. Open Biol 9 190192 (2019)
  8. O-GlcNAcylation enhances CPS1 catalytic efficiency for ammonia and promotes ureagenesis. Soria LR, Makris G, D'Alessio AM, De Angelis A, Boffa I, Pravata VM, Rüfenacht V, Attanasio S, Nusco E, Arena P, Ferenbach AT, Paris D, Cuomo P, Motta A, Nitzahn M, Lipshutz GS, Martínez-Pizarro A, Richard E, Desviat LR, Häberle J, van Aalten DMF, Brunetti-Pierri N. Nat Commun 13 5212 (2022)
  9. Native detection of protein O-GlcNAcylation by gel electrophoresis. Fu C, van Aalten DMF. Analyst 145 6826-6830 (2020)