6n7n Citations

Structures and operating principles of the replisome.

Science 363 (2019)
Related entries: 6n7i, 6n7s, 6n7t, 6n7v, 6n7w, 6n9u, 6n9v, 6n9w, 6n9x

Cited: 77 times
EuropePMC logo PMID: 30679383

Abstract

Visualization in atomic detail of the replisome that performs concerted leading- and lagging-DNA strand synthesis at a replication fork has not been reported. Using bacteriophage T7 as a model system, we determined cryo-electron microscopy structures up to 3.2-angstroms resolution of helicase translocating along DNA and of helicase-polymerase-primase complexes engaging in synthesis of both DNA strands. Each domain of the spiral-shaped hexameric helicase translocates sequentially hand-over-hand along a single-stranded DNA coil, akin to the way AAA+ ATPases (adenosine triphosphatases) unfold peptides. Two lagging-strand polymerases are attached to the primase, ready for Okazaki fragment synthesis in tandem. A β hairpin from the leading-strand polymerase separates two parental DNA strands into a T-shaped fork, thus enabling the closely coupled helicase to advance perpendicular to the downstream DNA duplex. These structures reveal the molecular organization and operating principles of a replisome.

Reviews - 6n7n mentioned but not cited (1)

  1. Single-Molecule Insights Into the Dynamics of Replicative Helicases. Spinks RR, Spenkelink LM, Dixon NE, van Oijen AM. Front Mol Biosci 8 741718 (2021)

Articles - 6n7n mentioned but not cited (3)

  1. Structures and operating principles of the replisome. Gao Y, Cui Y, Fox T, Lin S, Wang H, de Val N, Zhou ZH, Yang W. Science 363 eaav7003 (2019)
  2. Structural insight and characterization of human Twinkle helicase in mitochondrial disease. Riccio AA, Bouvette J, Perera L, Longley MJ, Krahn JM, Williams JG, Dutcher R, Borgnia MJ, Copeland WC. Proc Natl Acad Sci U S A 119 e2207459119 (2022)
  3. Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA. Jin S, Bueno C, Lu W, Wang Q, Chen M, Chen X, Wolynes PG, Gao Y. Proc Natl Acad Sci U S A 119 e2202239119 (2022)


Reviews citing this publication (19)

  1. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Lim CJ, Cech TR. Nat Rev Mol Cell Biol 22 283-298 (2021)
  2. TWINKLE and Other Human Mitochondrial DNA Helicases: Structure, Function and Disease. Peter B, Falkenberg M. Genes (Basel) 11 E408 (2020)
  3. Different mechanisms for translocation by monomeric and hexameric helicases. Gao Y, Yang W. Curr Opin Struct Biol 61 25-32 (2020)
  4. A structural view of bacterial DNA replication. Oakley AJ. Protein Sci 28 990-1004 (2019)
  5. AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms. Zhang S, Mao Y. Biomolecules 10 E629 (2020)
  6. The replisome guides nucleosome assembly during DNA replication. Zhang W, Feng J, Li Q. Cell Biosci 10 37 (2020)
  7. ATP Analogues for Structural Investigations: Case Studies of a DnaB Helicase and an ABC Transporter. Lacabanne D, Wiegand T, Wili N, Kozlova MI, Cadalbert R, Klose D, Mulkidjanian AY, Meier BH, Böckmann A. Molecules 25 E5268 (2020)
  8. Mechanisms of hexameric helicases. Fernandez AJ, Berger JM. Crit Rev Biochem Mol Biol 56 621-639 (2021)
  9. Replisome structure suggests mechanism for continuous fork progression and post-replication repair. Yang W, Seidman MM, Rupp WD, Gao Y. DNA Repair (Amst) 81 102658 (2019)
  10. Proteome expansion in the Potyviridae evolutionary radiation. Pasin F, Daròs JA, Tzanetakis IE. FEMS Microbiol Rev 46 fuac011 (2022)
  11. Mechanisms for Maintaining Eukaryotic Replisome Progression in the Presence of DNA Damage. Guilliam TA. Front Mol Biosci 8 712971 (2021)
  12. Anatomy of a twin DNA replication factory. Li H, Yao NY, O'Donnell ME. Biochem Soc Trans 48 2769-2778 (2020)
  13. DNA Helicase-Polymerase Coupling in Bacteriophage DNA Replication. Lo CY, Gao Y. Viruses 13 1739 (2021)
  14. Plant Organellar DNA Polymerases Evolved Multifunctionality through the Acquisition of Novel Amino Acid Insertions. Peralta-Castro A, García-Medel PL, Baruch-Torres N, Trasviña-Arenas CH, Juarez-Quintero V, Morales-Vazquez CM, Brieba LG. Genes (Basel) 11 E1370 (2020)
  15. Structural and Molecular Basis for Mitochondrial DNA Replication and Transcription in Health and Antiviral Drug Toxicity. Park J, Baruch-Torres N, Yin YW. Molecules 28 1796 (2023)
  16. DNA replication: In vitro single-molecule manipulation data analysis and models. Jarillo J, Ibarra B, Cao-García FJ. Comput Struct Biotechnol J 19 3765-3778 (2021)
  17. Determining translocation orientations of nucleic acid helicases. Perera HM, Trakselis MA. Methods 204 160-171 (2022)
  18. Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines. Lewis JS, van Oijen AM, Spenkelink LM. Chem Rev 123 13419-13440 (2023)
  19. The Response of the Replication Apparatus to Leading Template Strand Blocks. Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Cells 12 2607 (2023)

Articles citing this publication (54)

  1. Cryo-EM Structure of the Fork Protection Complex Bound to CMG at a Replication Fork. Baretić D, Jenkyn-Bedford M, Aria V, Cannone G, Skehel M, Yeeles JTP. Mol Cell 78 926-940.e13 (2020)
  2. Molecular Basis for ATP-Hydrolysis-Driven DNA Translocation by the CMG Helicase of the Eukaryotic Replisome. Eickhoff P, Kose HB, Martino F, Petojevic T, Abid Ali F, Locke J, Tamberg N, Nans A, Berger JM, Botchan MR, Yardimci H, Costa A. Cell Rep 28 2673-2688.e8 (2019)
  3. DNA unwinding mechanism of a eukaryotic replicative CMG helicase. Yuan Z, Georgescu R, Bai L, Zhang D, Li H, O'Donnell ME. Nat Commun 11 688 (2020)
  4. CryoEM structures of human CMG-ATPγS-DNA and CMG-AND-1 complexes. Rzechorzek NJ, Hardwick SW, Jatikusumo VA, Chirgadze DY, Pellegrini L. Nucleic Acids Res 48 6980-6995 (2020)
  5. Structure of a human replisome shows the organisation and interactions of a DNA replication machine. Jones ML, Baris Y, Taylor MRG, Yeeles JTP. EMBO J 40 e108819 (2021)
  6. Structure of the polymerase ε holoenzyme and atomic model of the leading strand replisome. Yuan Z, Georgescu R, Schauer GD, O'Donnell ME, Li H. Nat Commun 11 3156 (2020)
  7. Replisome bypass of a protein-based R-loop block by Pif1. Schauer GD, Spenkelink LM, Lewis JS, Yurieva O, Mueller SH, van Oijen AM, O'Donnell ME. Proc Natl Acad Sci U S A 117 30354-30361 (2020)
  8. DNA polymerase stalling at structured DNA constrains the expansion of short tandem repeats. Murat P, Guilbaud G, Sale JE. Genome Biol 21 209 (2020)
  9. Structures of AAA protein translocase Bcs1 suggest translocation mechanism of a folded protein. Tang WK, Borgnia MJ, Hsu AL, Esser L, Fox T, de Val N, Xia D. Nat Struct Mol Biol 27 202-209 (2020)
  10. Replisome genes regulation by antitumor miR-101-5p in clear cell renal cell carcinoma. Yamada Y, Nohata N, Uchida A, Kato M, Arai T, Moriya S, Mizuno K, Kojima S, Yamazaki K, Naya Y, Ichikawa T, Seki N. Cancer Sci 111 1392-1406 (2020)
  11. An explanation for origin unwinding in eukaryotes. Langston LD, O'Donnell ME. Elife 8 e46515 (2019)
  12. Duplex DNA engagement and RPA oppositely regulate the DNA-unwinding rate of CMG helicase. Kose HB, Xie S, Cameron G, Strycharska MS, Yardimci H. Nat Commun 11 3713 (2020)
  13. Mechanisms of loading and release of the 9-1-1 checkpoint clamp. Castaneda JC, Schrecker M, Remus D, Hite RK. Nat Struct Mol Biol 29 369-375 (2022)
  14. Excessive excision of correct nucleotides during DNA synthesis explained by replication hurdles. Singh A, Pandey M, Nandakumar D, Raney KD, Yin YW, Patel SS. EMBO J 39 e103367 (2020)
  15. A Primase-Induced Conformational Switch Controls the Stability of the Bacterial Replisome. Monachino E, Jergic S, Lewis JS, Xu ZQ, Lo ATY, O'Shea VL, Berger JM, Dixon NE, van Oijen AM. Mol Cell 79 140-154.e7 (2020)
  16. A viral genome packaging ring-ATPase is a flexibly coordinated pentamer. Dai L, Singh D, Lu S, Kottadiel VI, Vafabakhsh R, Mahalingam M, Chemla YR, Ha T, Rao VB. Nat Commun 12 6548 (2021)
  17. Single-molecule level structural dynamics of DNA unwinding by human mitochondrial Twinkle helicase. Kaur P, Longley MJ, Pan H, Wang W, Countryman P, Wang H, Copeland WC. J Biol Chem 295 5564-5576 (2020)
  18. CMG helicase can use ATPγS to unwind DNA: Implications for the rate-limiting step in the reaction mechanism. Yao NY, Zhang D, Yurieva O, O'Donnell ME. Proc Natl Acad Sci U S A 119 e2119580119 (2022)
  19. Amidst multiple binding orientations on fork DNA, Saccharolobus MCM helicase proceeds N-first for unwinding. Perera HM, Trakselis MA. Elife 8 e46096 (2019)
  20. Dynamic structural insights into the molecular mechanism of DNA unwinding by the bacteriophage T7 helicase. Ma JB, Chen Z, Xu CH, Huang XY, Jia Q, Zou ZY, Mi CY, Ma DF, Lu Y, Zhang HD, Li M. Nucleic Acids Res 48 3156-3164 (2020)
  21. Unwinding of a DNA replication fork by a hexameric viral helicase. Javed A, Major B, Stead JA, Sanders CM, Orlova EV. Nat Commun 12 5535 (2021)
  22. A DNA packaging motor inchworms along one strand allowing it to adapt to alternative double-helical structures. Castillo JP, B Tong A, Tafoya S, Jardine PJ, Bustamante C. Nat Commun 12 3439 (2021)
  23. Processivity, Velocity, and Universal Characteristics of Nucleic Acid Unwinding by Helicases. Chakrabarti S, Jarzynski C, Thirumalai D. Biophys J 117 867-879 (2019)
  24. Combined Solution and Crystal Methods Reveal the Electrostatic Tethers That Provide a Flexible Platform for Replication Activities in the Bacteriophage T7 Replisome. Foster BM, Rosenberg D, Salvo H, Stephens KL, Bintz BJ, Hammel M, Ellenberger T, Gainey MD, Wallen JR. Biochemistry 58 4466-4479 (2019)
  25. Helical inchworming: a novel translocation mechanism for a ring ATPase. Tong AB, Bustamante C. Biophys Rev 13 885-888 (2021)
  26. Molecular choreography of primer synthesis by the eukaryotic Pol α-primase. Yuan Z, Georgescu R, Li H, O'Donnell ME. Nat Commun 14 3697 (2023)
  27. Staphylococcal self-loading helicases couple the staircase mechanism with inter domain high flexibility. Qiao C, Debiasi-Anders G, Mir-Sanchis I. Nucleic Acids Res 50 8349-8362 (2022)
  28. Termination of DNA replication at Tus-ter barriers results in under-replication of template DNA. Jameson KH, Rudolph CJ, Hawkins M. J Biol Chem 297 101409 (2021)
  29. DNA Polymerase-Parental DNA Interaction Is Essential for Helicase-Polymerase Coupling during Bacteriophage T7 DNA Replication. Lo CY, Gao Y. Int J Mol Sci 23 1342 (2022)
  30. DNA replication from two different worlds. Li H, O'Donnell ME. Science 363 814-815 (2019)
  31. Quantitation of nucleoprotein complexes by UV absorbance and Bradford assay. Chen J, Luo H, Tao M, Liu Z, Wang G. Biophys Rep 7 429-436 (2021)
  32. Replication of the Mammalian Genome by Replisomes Specific for Euchromatin and Heterochromatin. Zhang J, Bellani MA, Huang J, James RC, Pokharel D, Gichimu J, Gali H, Stewart G, Seidman MM. Front Cell Dev Biol 9 729265 (2021)
  33. Residues located in the primase domain of the bacteriophage T7 primase-helicase are essential for loading the hexameric complex onto DNA. Hernandez AJ, Lee SJ, Thompson NJ, Griffith JD, Richardson CC. J Biol Chem 298 101996 (2022)
  34. Single-molecule biophysics experiments in silico: Toward a physical model of a replisome. Maffeo C, Chou HY, Aksimentiev A. iScience 25 104264 (2022)
  35. Structural and dynamic basis of DNA capture and translocation by mitochondrial Twinkle helicase. Li Z, Kaur P, Lo CY, Chopra N, Smith J, Wang H, Gao Y. Nucleic Acids Res 50 11965-11978 (2022)
  36. Structural basis for the assembly of the DNA polymerase holoenzyme from a monkeypox virus variant. Li Y, Shen Y, Hu Z, Yan R. Sci Adv 9 eadg2331 (2023)
  37. Structural basis of DNA polymerase θ mediated DNA end joining. Li C, Zhu H, Jin S, Maksoud LM, Jain N, Sun J, Gao Y. Nucleic Acids Res 51 463-474 (2023)
  38. Structural snapshots of the cellular folded protein translocation machinery Bcs1. Xia D. FEBS J 288 2870-2883 (2021)
  39. Structures and implications of the C962R protein of African swine fever virus. Shao Z, Su S, Yang J, Zhang W, Gao Y, Zhao X, Zhang Y, Shao Q, Cao C, Li H, Liu H, Zhang J, Lin J, Ma J, Gan J. Nucleic Acids Res 51 9475-9490 (2023)
  40. Two Distinct Modes of DNA Binding by an MCM Helicase Enable DNA Translocation. Meagher M, Myasnikov A, Enemark EJ. Int J Mol Sci 23 14678 (2022)
  41. Activity, substrate preference and structure of the HsMCM8/9 helicase. McKinzey DR, Li C, Gao Y, Trakselis MA. Nucleic Acids Res 51 7330-7341 (2023)
  42. Chimeric DNA byproducts in strand displacement amplification using the T7 replisome. Nye DB, Tanner NA. PLoS One 17 e0273979 (2022)
  43. Correlated Target Search by Vaccinia Virus Uracil-DNA Glycosylase, a DNA Repair Enzyme and a Processivity Factor of Viral Replication Machinery. Diatlova EA, Mechetin GV, Yudkina AV, Zharkov VD, Torgasheva NA, Endutkin AV, Shulenina OV, Konevega AL, Gileva IP, Shchelkunov SN, Zharkov DO. Int J Mol Sci 24 9113 (2023)
  44. Cryo-EM structure of the RuvAB-Holliday junction intermediate complex from Pseudomonas aeruginosa. Zhang X, Zhou Z, Dai L, Chao Y, Liu Z, Huang M, Qu Q, Lin Z. Front Plant Sci 14 1139106 (2023)
  45. Mechanism of eukaryotic origin unwinding is a dual helicase DNA shearing process. Langston LD, Georgescu RE, O'Donnell ME. Proc Natl Acad Sci U S A 120 e2316466120 (2023)
  46. Multiple roles of Pol epsilon in eukaryotic chromosome replication. Cvetkovic MA, Ortega E, Bellelli R, Costa A. Biochem Soc Trans 50 309-320 (2022)
  47. Plasmid replication based on the T7 origin of replication requires a T7 RNAP variant and inactivation of ribonuclease H. Becker K, Meyer A, Roberts TM, Panke S. Nucleic Acids Res 49 8189-8198 (2021)
  48. Quantitative methods to study helicase, DNA polymerase, and exonuclease coupling during DNA replication. Singh A, Patel SS. Methods Enzymol 672 75-102 (2022)
  49. Structural and DNA end resection study of the bacterial NurA-HerA complex. Yang J, Sun Y, Wang Y, Hao W, Cheng K. BMC Biol 21 42 (2023)
  50. Structural basis of the T4 bacteriophage primosome assembly and primer synthesis. Feng X, Spiering MM, de Luna Almeida Santos R, Benkovic SJ, Li H. Nat Commun 14 4396 (2023)
  51. The N-terminal domain of human mitochondrial helicase Twinkle has DNA-binding activity crucial for supporting processive DNA synthesis by polymerase γ. Johnson LC, Singh A, Patel SS. J Biol Chem 299 102797 (2023)
  52. The plant organellar primase-helicase directs template recognition and primosome assembly via its zinc finger domain. Peralta-Castro A, Cordoba-Andrade F, Díaz-Quezada C, Sotelo-Mundo R, Winkler R, Brieba LG. BMC Plant Biol 23 467 (2023)
  53. Unraveling Reversible DNA Cross-Links with a Biological Machine. Byrne SR, Rokita SE. Chem Res Toxicol 33 2903-2913 (2020)
  54. Visualizing replication fork encounters with DNA interstrand crosslinks. James RC, Bellani MA, Zhang J, Huang J, Shaik A, Pokharel D, Gali H, Gichimu J, Thazhathveetil AK, Seidman MM. Methods Enzymol 661 53-75 (2021)