Literature for family C51 unassigned peptidases

Summary Sequences Sequence features Distribution Literature

(Topics flags: S Structure, A Assay, U Therapeutic. To select only the references relevant to a single topic, click the link above. See explanation.)

    2023
  1. Krishnappa,G., Mandal,M., Ganesan,S., Babu,S., Padavattan,S., Haradara Bahubali,V.K. and Padmanabhan,B. \<br\>Structural and biochemical insights into the bacteriophage PlyGRCS endolysin targeting methicillin-resistant Staphylococcus aureus (MRSA) and serendipitous discovery of its interaction with a cold shock protein C (CspC)\<br\>Protein Sci (2023) 32, e4737. PubMed  Europe PubMed DOI  PMC  EPMC
  2. 2021
  3. Li,X., Wang,S., Nyaruaba,R., Liu,H., Yang,H. and Wei,H. \<br\>A Highly Active Chimeric Lysin with a Calcium-Enhanced Bactericidal Activity against Staphylococcus aureus In Vitro and In Vivo\<br\>Antibiotics (Basel) (2021) 10, PubMed  Europe PubMed DOI  PMC  EPMC
  4. Oechslin,F., Menzi,C., Moreillon,P. and Resch,G. \<br\>The multi-domain architecture of a bacteriophage endolysin enables intramolecular synergism and regulation of bacterial lysis\<br\>J Biol Chem (2021) 100639. PubMed  Europe PubMed DOI
  5. 2020
  6. Willing,S., Dyer,E., Schneewind,O. and Missiakas,D. \<br\>FmhA and FmhC of Staphylococcus aureus incorporate serine residues into peptidoglycan crossbridges\<br\>J Biol Chem (2020) PubMed  Europe PubMed DOI
  7. 2019
  8. Yang,H., Gong,Y., Zhang,H., Etobayeva,I., Miernikiewicz,P., Luo,D., Li,X., Zhang,X., Dabrowska,K., Nelson,D.C., He,J. and Wei,H. \<br\>ClyJ, a novel pneumococcal chimeric lysin with a CHAP catalytic domain\<br\>Antimicrobial Agents Chemother (2019) PubMed  Europe PubMed DOI
  9. Yang,H., Luo,D., Etobayeva,I., Li,X., Gong,Y., Wang,S., Li,Q., Xu,P., Yin,W., He,J., Nelson,D.C. and Wei,H. \<br\>Linker editing of pneumococcal lysin ClyJ conveys improved bactericidal activity\<br\>Antimicrobial Agents Chemother (2019) PubMed  Europe PubMed DOI
  10. 2018
  11. Fujiki,J., Nakamura,T., Furusawa,T., Ohno,H., Takahashi,H., Kitana,J., Usui,M., Higuchi,H., Tanji,Y., Tamura,Y. and Iwano,H. \<br\>Characterization of the lytic capability of a LysK-like endolysin, Lys-phiSA012, derived from a polyvalent Staphylococcus aureus bacteriophage\<br\>Pharmaceuticals (Basel) (2018) 11, PubMed  Europe PubMed DOI
  12. 2017
  13. Cheng,M., Zhang,Y., Li,X., Liang,J., Hu,L., Gong,P., Zhang,L., Cai,R., Zhang,H., Ge,J., Ji,Y., Guo,Z., Feng,X., Sun,C., Yang,Y., Lei,L., Han,W. and Gu,J. \<br\>Endolysin LysEF-P10 shows potential as an alternative treatment strategy for multidrug-resistant Enterococcus faecalis infections\<br\>Sci Rep (2017) 7, 10164. PubMed  Europe PubMed DOI  PMC  EPMC
  14. Haddad Kashani,H., Fahimi,H., Dasteh Goli,Y. and Moniri,R. \<br\>A novel chimeric endolysin with antibacterial activity against methicillin-resistant Staphylococcus aureus\<br\>Front Cell Infect Microbiol (2017) 7, 290. PubMed  Europe PubMed DOI  PMC  EPMC
  15. Kohler,V., Probst,I., Aufschnaiter,A., Buttner,S., Schaden,L., Rechberger,G.N., Koraimann,G., Grohmann,E. and Keller,W. \<br\>Conjugative type IV secretion in Gram-positive pathogens: TraG, a lytic transglycosylase and endopeptidase, interacts with translocation channel protein TraM\<br\>Plasmid (2017) 91, 9-18. PubMed  Europe PubMed DOI
  16. Lood,R., Molina,H. and Fischetti,V.A. \<br\>Determining bacteriophage endopeptidase activity using either fluorophore-quencher labeled peptides combined with liquid chromatography-mass spectrometry (LC-MS) or Forster resonance energy transfer (FRET) assays\<br\>PLoS ONE (2017) 12, e0173919. PubMed  Europe PubMed DOI  A
  17. 2016
  18. Hu,Y., Yang,H., Wang,J., Zhang,Y., Yu,J. and Wei,H. \<br\>Comparison between a chimeric lysin ClyH and other enzymes for extracting DNA to detect methicillin resistant Staphylococcus aureus by quantitative PCR\<br\>World J Microbiol Biotechnol (2016) 32, 1. PubMed  Europe PubMed DOI
  19. 2015
  20. Becker,S.C., Swift,S., Korobova,O., Schischkova,N., Kopylov,P., Donovan,D.M. and Abaev,I. \<br\>Lytic activity of the staphylolytic Twort phage endolysin CHAP domain is enhanced by the SH3b cell wall binding domain\<br\>FEMS Microbiol Lett (2015) 362, 1-8. PubMed  Europe PubMed DOI
  21. Dong,Q., Wang,J., Yang,H., Wei,C., Yu,J., Zhang,Y., Huang,Y., Zhang,X.-E. and Wei,H. \<br\>Construction of a chimeric lysin Ply187N-V12C with extended lytic activity against staphylococci and streptococci\<br\>Microb Biotechnol (2015) 8, 210-220. PubMed  Europe PubMed DOI
  22. Huang,Y., Yang,H., Yu,J. and Wei,H. \<br\>Molecular dissection of phage lysin PlySs2: integrity of the catalytic and cell wall binding domains is essential for its broad lytic activity\<br\>Virol Sin (2015) 30, 45-51. PubMed  Europe PubMed DOI
  23. Li,Q., Cheng,W., Morlot,C., Bai,X.-H., Jiang,Y.-L., Wang,W., Roper,D.I., Vernet,T., Dong,Y.-H., Chen,Y. and Zhou,C.-Z. \<br\>Full-length structure of the major autolysin LytA\<br\>Acta Crystallogr D Biol Crystallogr (2015) 71, 1373-1381. PubMed  Europe PubMed DOI  S
  24. Linden,S.B., Zhang,H., Heselpoth,R.D., Shen,Y., Schmelcher,M., Eichenseher,F. and Nelson,D.C. \<br\>Biochemical and biophysical characterization of PlyGRCS, a bacteriophage endolysin active against methicillin-resistant Staphylococcus aureus\<br\>Appl Microbiol Biotechnol (2015) 99, 741-752. PubMed  Europe PubMed DOI
  25. 2014
  26. Lood,R., Raz,A., Molina,H., Euler,C.W. and Fischetti,V.A. \<br\>A highly active and negatively charged Streptococcus pyogenes lysin with a rare D-alanyl-L-alanine endopeptidase activity protects mice against streptococcal bacteremia\<br\>Antimicrobial Agents Chemother (2014) 58, 3073-3084. PubMed  Europe PubMed DOI
  27. Sundarrajan,S., Raghupatil,J., Vipra,A., Narasimhaswamy,N., Saravanan,S., Appaiah,C., Poonacha,N., Desai,S., Nair,S., Bhatt,R.N., Roy,P., Chikkamadaiah,R., Durgaiah,M., Sriram,B., Padmanabhan,S. and Sharma,U. \<br\>Bacteriophage-derived CHAP domain protein, P128, kills Staphylococcus cells by cleaving interpeptide cross-bridge of peptidoglycan\<br\>Microbiology (Reading, Engl.) (2014) 160, 2157-2169. PubMed  Europe PubMed DOI
  28. 2013
  29. Arends,K., Celik,E.K., Probst,I., Goessweiner-Mohr,N., Fercher,C., Grumet,L., Soellue,C., Abajy,M.Y., Sakinc,T., Broszat,M., Schiwon,K., Koraimann,G., Keller,W. and Grohmann,E. \<br\>TraG encoded by the pIP501 type IV secretion system is a two-domain peptidoglycan-degrading enzyme essential for conjugative transfer\<br\>J Bacteriol (2013) 195, 4436-4444. PubMed  Europe PubMed DOI
  30. Gilmer,D.B., Schmitz,J.E., Euler,C.W. and Fischetti,V.A. \<br\>Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant staphylococcus aureus\<br\>Antimicrobial Agents Chemother (2013) 57, 2743-2750. PubMed  Europe PubMed DOI
  31. Mao,J., Schmelcher,M., Harty,W.J., Foster-Frey,J. and Donovan,D.M. \<br\>Chimeric Ply187 endolysin kills Staphylococcus aureus more effectively than the parental enzyme\<br\>FEMS Microbiol Lett (2013) 342, 30-36. PubMed  Europe PubMed DOI
  32. 2012
  33. George,S.E., Chikkamadaiah,R., Durgaiah,M., Joshi,A.A., Thankappan,U.P., Madhusudhana,S.N. and Sriram,B. \<br\>Biochemical characterization and evaluation of cytotoxicity of antistaphylococcal chimeric protein P128\<br\>BMC Res Notes (2012) 5, 280. PubMed  Europe PubMed DOI  U
  34. Schmelcher,M., Korobova,O., Schischkova,N., Kiseleva,N., Kopylov,P., Pryamchuk,S., Donovan,D.M. and Abaev,I. \<br\>Staphylococcus haemolyticus prophage PhiSH2 endolysin relies on cysteine, histidine-dependent amidohydrolases/peptidases activity for lysis 'from without'\<br\>J Biotechnol (2012) 162, 289-298. PubMed  Europe PubMed DOI
  35. 2010
  36. Daniel,A., Euler,C., Collin,M., Chahales,P., Gorelick,K.J. and Fischetti,V.A. \<br\>Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus\<br\>Antimicrobial Agents Chemother (2010) 54, 1603-1612. PubMed  Europe PubMed DOI  PMC  EPMC
  37. 2004
  38. Romero,P., Lopez,R. and Garcia,E. \<br\>Characterization of LytA-like N-acetylmuramoyl-L-alanine amidases from two new Streptococcus mitis bacteriophages provides insights into the properties of the major pneumococcal autolysin\<br\>J Bacteriol (2004) 186, 8229-8239. PubMed  Europe PubMed DOI  PMC  EPMC