4u2p Citations

Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states.

Cell 158 778-792 (2014)
Related entries: 4u1o, 4u1w, 4u1x, 4u1y, 4u1z, 4u21, 4u22, 4u23, 4u2q, 4u2r

Cited: 123 times
EuropePMC logo PMID: 25109876

Abstract

Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory signaling in the nervous system. Despite the profound importance of iGluRs to neurotransmission, little is known about the structures and dynamics of intact receptors in distinct functional states. Here, we elucidate the structures of the intact GluA2 AMPA receptor in an apo resting/closed state, in an activated/pre-open state bound with partial agonists and a positive allosteric modulator, and in a desensitized/closed state in complex with fluorowilliardiine. To probe the conformational properties of these states, we carried out double electron-electron resonance experiments on cysteine mutants and cryoelectron microscopy studies. We show how agonist binding modulates the conformation of the ligand-binding domain "layer" of the intact receptors and how, upon desensitization, the receptor undergoes large conformational rearrangements of the amino-terminal and ligand-binding domains. We define mechanistic principles by which to understand antagonism, activation, and desensitization in AMPA iGluRs.

Reviews - 4u2p mentioned but not cited (5)

  1. Emerging structural insights into the function of ionotropic glutamate receptors. Karakas E, Regan MC, Furukawa H. Trends Biochem Sci 40 328-337 (2015)
  2. Structure and symmetry inform gating principles of ionotropic glutamate receptors. Zhu S, Gouaux E. Neuropharmacology 112 11-15 (2017)
  3. Advancing NMDA Receptor Physiology by Integrating Multiple Approaches. Zhou HX, Wollmuth LP. Trends Neurosci 40 129-137 (2017)
  4. Post-expression strategies for structural investigations of membrane proteins. Columbus L. Curr Opin Struct Biol 32 131-138 (2015)
  5. Hijacked then lost in translation: the plight of the recombinant host cell in membrane protein structural biology projects. Bill RM, von der Haar T. Curr Opin Struct Biol 32 147-155 (2015)

Articles - 4u2p mentioned but not cited (16)

  1. Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy. Tao CL, Liu YT, Sun R, Zhang B, Qi L, Shivakoti S, Tian CL, Zhang P, Lau PM, Zhou ZH, Bi GQ. J Neurosci 38 1493-1510 (2018)
  2. Structural Bases of Desensitization in AMPA Receptor-Auxiliary Subunit Complexes. Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, Sobolevsky AI. Neuron 94 569-580.e5 (2017)
  3. Structure and organization of heteromeric AMPA-type glutamate receptors. Herguedas B, García-Nafría J, Cais O, Fernández-Leiro R, Krieger J, Ho H, Greger IH. Science 352 aad3873 (2016)
  4. Structural basis of kainate subtype glutamate receptor desensitization. Meyerson JR, Chittori S, Merk A, Rao P, Han TH, Serpe M, Mayer ML, Subramaniam S. Nature 537 567-571 (2016)
  5. De Novo Variants in GRIA4 Lead to Intellectual Disability with or without Seizures and Gait Abnormalities. Martin S, Chamberlin A, Shinde DN, Hempel M, Strom TM, Schreiber A, Johannsen J, Ousager LB, Larsen MJ, Hansen LK, Fatemi A, Cohen JS, Lemke J, Sørensen KP, Helbig KL, Lessel D, Abou Jamra R. Am J Hum Genet 101 1013-1020 (2017)
  6. Mechanism of modulation of AMPA receptors by TARP-γ8. Carrillo E, Shaikh SA, Berka V, Durham RJ, Litwin DB, Lee G, MacLean DM, Nowak LM, Jayaraman V. J Gen Physiol 152 jgp.201912451 (2020)
  7. Architecture and structural dynamics of the heteromeric GluK2/K5 kainate receptor. Khanra N, Brown PM, Perozzo AM, Bowie D, Meyerson JR. Elife 10 e66097 (2021)
  8. Chemosensory adaptations of the mountain fly Drosophila nigrosparsa (Insecta: Diptera) through genomics' and structural biology's lenses. Cicconardi F, Di Marino D, Olimpieri PP, Arthofer W, Schlick-Steiner BC, Steiner FM. Sci Rep 7 43770 (2017)
  9. Dynamics of the Ligand Binding Domain Layer during AMPA Receptor Activation. Baranovic J, Chebli M, Salazar H, Carbone AL, Faelber K, Lau AY, Daumke O, Plested AJ. Biophys J 110 896-911 (2016)
  10. Mechanism of partial agonism in AMPA-type glutamate receptors. Salazar H, Eibl C, Chebli M, Plested A. Nat Commun 8 14327 (2017)
  11. Probing Intersubunit Interfaces in AMPA-subtype Ionotropic Glutamate Receptors. Yelshanskaya MV, Saotome K, Singh AK, Sobolevsky AI. Sci Rep 6 19082 (2016)
  12. The structural arrangement at intersubunit interfaces in homomeric kainate receptors. Litwin DB, Carrillo E, Shaikh SA, Berka V, Jayaraman V. Sci Rep 9 6969 (2019)
  13. Measurements of the Timescale and Conformational Space of AMPA Receptor Desensitization. Salazar H, Mischke S, Plested AJR. Biophys J 119 206-218 (2020)
  14. TAK-137, an AMPA-R potentiator with little agonistic effect, has a wide therapeutic window. Kunugi A, Tanaka M, Suzuki A, Tajima Y, Suzuki N, Suzuki M, Nakamura S, Kuno H, Yokota A, Sogabe S, Kosugi Y, Awasaki Y, Kaku T, Kimura H. Neuropsychopharmacology 44 961-970 (2019)
  15. Small-angle neutron scattering studies on the AMPA receptor GluA2 in the resting, AMPA-bound and GYKI-53655-bound states. Larsen AH, Dorosz J, Thorsen TS, Johansen NT, Darwish T, Midtgaard SR, Arleth L, Kastrup JS. IUCrJ 5 780-793 (2018)
  16. research-article Structural dynamics of GluK2 kainate receptors in apo and partial agonist bound states. Bogdanović N, Segura-Covarrubias G, Zhang L, Tajima N. Res Sq rs.3.rs-3592604 (2023)


Reviews citing this publication (28)

  1. The Lysosome as a Regulatory Hub. Perera RM, Zoncu R. Annu Rev Cell Dev Biol 32 223-253 (2016)
  2. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Pharmacol Rev 73 298-487 (2021)
  3. Targeting glutamate signalling in depression: progress and prospects. Murrough JW, Abdallah CG, Mathew SJ. Nat Rev Drug Discov 16 472-486 (2017)
  4. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Greger IH, Watson JF, Cull-Candy SG. Neuron 94 713-730 (2017)
  5. Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Changeux JP, Christopoulos A. Cell 166 1084-1102 (2016)
  6. A glimpse of structural biology through X-ray crystallography. Shi Y. Cell 159 995-1014 (2014)
  7. NMDA receptors: linking physiological output to biophysical operation. Iacobucci GJ, Popescu GK. Nat Rev Neurosci 18 236-249 (2017)
  8. AMPA receptor structure and auxiliary subunits. Kamalova A, Nakagawa T. J Physiol 599 453-469 (2021)
  9. A structural biology perspective on NMDA receptor pharmacology and function. Regan MC, Romero-Hernandez A, Furukawa H. Curr Opin Struct Biol 33 68-75 (2015)
  10. AMPA receptor potentiators: from drug design to cognitive enhancement. Partin KM. Curr Opin Pharmacol 20 46-53 (2015)
  11. Structural mechanisms of activation and desensitization in neurotransmitter-gated ion channels. Plested AJ. Nat Struct Mol Biol 23 494-502 (2016)
  12. Structural biology of glutamate receptor ion channel complexes. Mayer ML. Curr Opin Struct Biol 41 119-127 (2016)
  13. Membrane protein structures without crystals, by single particle electron cryomicroscopy. Vinothkumar KR. Curr Opin Struct Biol 33 103-114 (2015)
  14. Allosteric modulation as a unifying mechanism for receptor function and regulation. Changeux JP, Christopoulos A. Diabetes Obes Metab 19 Suppl 1 4-21 (2017)
  15. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. Majeed S, Ahmad AB, Sehar U, Georgieva ER. Membranes (Basel) 11 685 (2021)
  16. Structure and mechanism of AMPA receptor - auxiliary protein complexes. Chen S, Gouaux E. Curr Opin Struct Biol 54 104-111 (2019)
  17. Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains. Krieger J, Bahar I, Greger IH. Biophys J 109 1136-1148 (2015)
  18. The dynamic AMPA receptor extracellular region: a platform for synaptic protein interactions. García-Nafría J, Herguedas B, Watson JF, Greger IH. J Physiol 594 5449-5458 (2016)
  19. The Challenge of Interpreting Glutamate-Receptor Ion-Channel Structures. Mayer ML. Biophys J 113 2143-2151 (2017)
  20. Postsynaptic protein organization revealed by electron microscopy. Liu YT, Tao CL, Lau PM, Zhou ZH, Bi GQ. Curr Opin Struct Biol 54 152-160 (2019)
  21. Mapping the Conformational Landscape of Glutamate Receptors Using Single Molecule FRET. MacLean DM, Durham RJ, Jayaraman V. Trends Neurosci 42 128-139 (2019)
  22. Retour aux sources: defining the structural basis of glutamate receptor activation. Dawe GB, Aurousseau MR, Daniels BA, Bowie D. J Physiol 593 97-110 (2015)
  23. Structural Dynamics of Glutamate Signaling Systems by smFRET. Durham RJ, Latham DR, Sanabria H, Jayaraman V. Biophys J 119 1929-1936 (2020)
  24. Activation and desensitization of ionotropic glutamate receptors by selectively triggering pre-existing motions. Krieger J, Lee JY, Greger IH, Bahar I. Neurosci Lett 700 22-29 (2019)
  25. The structure and function of glutamate receptors: Mg2+ block to X-ray diffraction. Mayer ML. Neuropharmacology 112 4-10 (2017)
  26. Tuning synaptic strength by regulation of AMPA glutamate receptor localization. Stockwell I, Watson JF, Greger IH. Bioessays 46 e2400006 (2024)
  27. [Cryo-microscopy, an alternative to the X-ray crystallography?]. Boutin JA, Li Z, Vuillard L, Vénien-Bryan C. Med Sci (Paris) 32 758-767 (2016)
  28. Ionotropic glutamate receptors made crystal clear. Bowie D. Trends Neurosci 37 687-688 (2014)

Articles citing this publication (74)

  1. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, Sobolevsky AI. Nature 549 60-65 (2017)
  2. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Tajima N, Karakas E, Grant T, Simorowski N, Diaz-Avalos R, Grigorieff N, Furukawa H. Nature 534 63-68 (2016)
  3. Mechanism of NMDA Receptor Inhibition and Activation. Zhu S, Stein RA, Yoshioka C, Lee CH, Goehring A, Mchaourab HS, Gouaux E. Cell 165 704-714 (2016)
  4. Glutamate-induced AMPA receptor desensitization increases their mobility and modulates short-term plasticity through unbinding from Stargazin. Constals A, Penn AC, Compans B, Toulmé E, Phillipat A, Marais S, Retailleau N, Hafner AS, Coussen F, Hosy E, Choquet D. Neuron 85 787-803 (2015)
  5. Activation and Desensitization Mechanism of AMPA Receptor-TARP Complex by Cryo-EM. Chen S, Zhao Y, Wang Y, Shekhar M, Tajkhorshid E, Gouaux E. Cell 170 1234-1246.e14 (2017)
  6. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Lü W, Du J, Goehring A, Gouaux E. Science 355 eaal3729 (2017)
  7. Structural basis for integration of GluD receptors within synaptic organizer complexes. Elegheert J, Kakegawa W, Clay JE, Shanks NF, Behiels E, Matsuda K, Kohda K, Miura E, Rossmann M, Mitakidis N, Motohashi J, Chang VT, Siebold C, Greger IH, Nakagawa T, Yuzaki M, Aricescu AR. Science 353 295-299 (2016)
  8. Elucidation of AMPA receptor-stargazin complexes by cryo-electron microscopy. Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, Sobolevsky AI. Science 353 83-86 (2016)
  9. Voltage Sensor Movements during Hyperpolarization in the HCN Channel. Lee CH, MacKinnon R. Cell 179 1582-1589.e7 (2019)
  10. Structural Bases of Noncompetitive Inhibition of AMPA-Subtype Ionotropic Glutamate Receptors by Antiepileptic Drugs. Yelshanskaya MV, Singh AK, Sampson JM, Narangoda C, Kurnikova M, Sobolevsky AI. Neuron 91 1305-1315 (2016)
  11. Architecture of fully occupied GluA2 AMPA receptor-TARP complex elucidated by cryo-EM. Zhao Y, Chen S, Yoshioka C, Baconguis I, Gouaux E. Nature 536 108-111 (2016)
  12. Structural Mechanisms of Gating in Ionotropic Glutamate Receptors. Twomey EC, Sobolevsky AI. Biochemistry 57 267-276 (2018)
  13. Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain. Watson JF, Ho H, Greger IH. Elife 6 e23024 (2017)
  14. Architecture of the heteromeric GluA1/2 AMPA receptor in complex with the auxiliary subunit TARP γ8. Herguedas B, Watson JF, Ho H, Cais O, García-Nafría J, Greger IH. Science 364 eaav9011 (2019)
  15. Structural Basis of Functional Transitions in Mammalian NMDA Receptors. Chou TH, Tajima N, Romero-Hernandez A, Furukawa H. Cell 182 357-371.e13 (2020)
  16. CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel. James ZM, Borst AJ, Haitin Y, Frenz B, DiMaio F, Zagotta WN, Veesler D. Proc Natl Acad Sci U S A 114 4430-4435 (2017)
  17. Stargazin Modulation of AMPA Receptors. Shaikh SA, Dolino DM, Lee G, Chatterjee S, MacLean DM, Flatebo C, Landes CF, Jayaraman V. Cell Rep 17 328-335 (2016)
  18. Cooperative Dynamics of Intact AMPA and NMDA Glutamate Receptors: Similarities and Subfamily-Specific Differences. Dutta A, Krieger J, Lee JY, Garcia-Nafria J, Greger IH, Bahar I. Structure 23 1692-1704 (2015)
  19. Distinct Structural Pathways Coordinate the Activation of AMPA Receptor-Auxiliary Subunit Complexes. Dawe GB, Musgaard M, Aurousseau MRP, Nayeem N, Green T, Biggin PC, Bowie D. Neuron 89 1264-1276 (2016)
  20. The structural bases for agonist diversity in an Arabidopsis thaliana glutamate receptor-like channel. Alfieri A, Doccula FG, Pederzoli R, Grenzi M, Bonza MC, Luoni L, Candeo A, Romano Armada N, Barbiroli A, Valentini G, Schneider TR, Bassi A, Bolognesi M, Nardini M, Costa A. Proc Natl Acad Sci U S A 117 752-760 (2020)
  21. A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors. Alsaloum M, Kazi R, Gan Q, Amin J, Wollmuth LP. J Neurosci 36 2617-2622 (2016)
  22. Functional reconstitution of Drosophila melanogaster NMJ glutamate receptors. Han TH, Dharkar P, Mayer ML, Serpe M. Proc Natl Acad Sci U S A 112 6182-6187 (2015)
  23. Navigating Membrane Protein Structure, Dynamics, and Energy Landscapes Using Spin Labeling and EPR Spectroscopy. Claxton DP, Kazmier K, Mishra S, Mchaourab HS. Methods Enzymol 564 349-387 (2015)
  24. Novel Functional Properties of Drosophila CNS Glutamate Receptors. Li Y, Dharkar P, Han TH, Serpe M, Lee CH, Mayer ML. Neuron 92 1036-1048 (2016)
  25. An inter-dimer allosteric switch controls NMDA receptor activity. Esmenjaud JB, Stroebel D, Chan K, Grand T, David M, Wollmuth LP, Taly A, Paoletti P. EMBO J 38 e99894 (2019)
  26. Conformational Plasticity in the Transsynaptic Neurexin-Cerebellin-Glutamate Receptor Adhesion Complex. Cheng S, Seven AB, Wang J, Skiniotis G, Özkan E. Structure 24 2163-2173 (2016)
  27. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes. Alberstein R, Grey R, Zimmet A, Simmons DK, Mayer ML. Proc Natl Acad Sci U S A 112 E6048-57 (2015)
  28. Role of the Ion Channel Extracellular Collar in AMPA Receptor Gating. Yelshanskaya MV, Mesbahi-Vasey S, Kurnikova MG, Sobolevsky AI. Sci Rep 7 1050 (2017)
  29. Structural rearrangement of the intracellular domains during AMPA receptor activation. Zachariassen LG, Katchan L, Jensen AG, Pickering DS, Plested AJ, Kristensen AS. Proc Natl Acad Sci U S A 113 E3950-9 (2016)
  30. Reduced curvature of ligand-binding domain free-energy surface underlies partial agonism at NMDA receptors. Dai J, Zhou HX. Structure 23 228-236 (2015)
  31. Gating modules of the AMPA receptor pore domain revealed by unnatural amino acid mutagenesis. Poulsen MH, Poshtiban A, Klippenstein V, Ghisi V, Plested AJR. Proc Natl Acad Sci U S A 116 13358-13367 (2019)
  32. Cryo-EM structures of the ionotropic glutamate receptor GluD1 reveal a non-swapped architecture. Burada AP, Vinnakota R, Kumar J. Nat Struct Mol Biol 27 84-91 (2020)
  33. Probing the Structural Dynamics of the NMDA Receptor Activation by Coarse-Grained Modeling. Zheng W, Wen H, Iacobucci GJ, Popescu GK. Biophys J 112 2589-2601 (2017)
  34. Dual Effects of TARP γ-2 on Glutamate Efficacy Can Account for AMPA Receptor Autoinactivation. Coombs ID, MacLean DM, Jayaraman V, Farrant M, Cull-Candy SG. Cell Rep 20 1123-1135 (2017)
  35. Single-particle electron microscopy in the study of membrane protein structure. De Zorzi R, Mi W, Liao M, Walz T. Microscopy (Oxf) 65 81-96 (2016)
  36. The Transmembrane Domain Mediates Tetramerization of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors. Gan Q, Dai J, Zhou HX, Wollmuth LP. J Biol Chem 291 6595-6606 (2016)
  37. Pharmacology and Structural Analysis of Ligand Binding to the Orthosteric Site of Glutamate-Like GluD2 Receptors. Kristensen AS, Hansen KB, Naur P, Olsen L, Kurtkaya NL, Dravid SM, Kvist T, Yi F, Pøhlsgaard J, Clausen RP, Gajhede M, Kastrup JS, Traynelis SF. Mol Pharmacol 89 253-262 (2016)
  38. Control of Kir channel gating by cytoplasmic domain interface interactions. Borschel WF, Wang S, Lee S, Nichols CG. J Gen Physiol 149 561-576 (2017)
  39. Mechanisms underlying TARP modulation of the GluA1/2-γ8 AMPA receptor. Herguedas B, Kohegyi BK, Dohrke JN, Watson JF, Zhang D, Ho H, Shaikh SA, Lape R, Krieger JM, Greger IH. Nat Commun 13 734 (2022)
  40. Hodgkin-Huxley-Katz Prize Lecture: Genetic and pharmacological control of glutamate receptor channel through a highly conserved gating motif. Perszyk RE, Myers SJ, Yuan H, Gibb AJ, Furukawa H, Sobolevsky AI, Traynelis SF. J Physiol 598 3071-3083 (2020)
  41. Protein functional dynamics from the rigorous global analysis of DEER data: Conditions, components, and conformations. Hustedt EJ, Stein RA, Mchaourab HS. J Gen Physiol 153 e201711954 (2021)
  42. Homomeric GluA2(R) AMPA receptors can conduct when desensitized. Coombs ID, Soto D, McGee TP, Gold MG, Farrant M, Cull-Candy SG. Nat Commun 10 4312 (2019)
  43. Semiclosed Conformations of the Ligand-Binding Domains of NMDA Receptors during Stationary Gating. Dai J, Zhou HX. Biophys J 111 1418-1428 (2016)
  44. Auxiliary subunits keep AMPA receptors compact during activation and desensitization. Baranovic J, Plested AJ. Elife 7 e40548 (2018)
  45. Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome. Ismail V, Zachariassen LG, Godwin A, Sahakian M, Ellard S, Stals KL, Baple E, Brown KT, Foulds N, Wheway G, Parker MO, Lyngby SM, Pedersen MG, Desir J, Bayat A, Musgaard M, Guille M, Kristensen AS, Baralle D. Am J Hum Genet 109 1217-1241 (2022)
  46. Unitary Properties of AMPA Receptors with Reduced Desensitization. Zhang W, Eibl C, Weeks AM, Riva I, Li YJ, Plested AJR, Howe JR. Biophys J 113 2218-2235 (2017)
  47. The structural arrangement and dynamics of the heteromeric GluK2/GluK5 kainate receptor as determined by smFRET. Litwin DB, Paudyal N, Carrillo E, Berka V, Jayaraman V. Biochim Biophys Acta Biomembr 1862 183001 (2020)
  48. Mechanism-Based Mathematical Model for Gating of Ionotropic Glutamate Receptors. Dai J, Wollmuth LP, Zhou HX. J Phys Chem B 119 10934-10940 (2015)
  49. Structural Basis of Reversible Phosphorylation by Maize Pyruvate Orthophosphate Dikinase Regulatory Protein. Jiang L, Chen YB, Zheng J, Chen Z, Liu Y, Tao Y, Wu W, Chen Z, Wang BC. Plant Physiol 170 732-741 (2016)
  50. Structural and Functional Insights into GluK3-kainate Receptor Desensitization and Recovery. Kumari J, Vinnakota R, Kumar J. Sci Rep 9 10254 (2019)
  51. Structural mobility tunes signalling of the GluA1 AMPA glutamate receptor. Zhang D, Ivica J, Krieger JM, Ho H, Yamashita K, Stockwell I, Baradaran R, Cais O, Greger IH. Nature 621 877-882 (2023)
  52. Functional Validation of Heteromeric Kainate Receptor Models. Paramo T, Brown PMGE, Musgaard M, Bowie D, Biggin PC. Biophys J 113 2173-2177 (2017)
  53. In-Lipid Structure of Pressure-Sensitive Domains Hints Mechanosensitive Channel Functional Diversity. Kapsalis C, Ma Y, Bode BE, Pliotas C. Biophys J 119 448-459 (2020)
  54. GluA1 signal peptide determines the spatial assembly of heteromeric AMPA receptors. He XY, He XY, Li YJ, Kalyanaraman C, Qiu LL, Chen C, Xiao Q, Liu WX, Zhang W, Yang JJ, Chen G, Jacobson MP, Shi YS. Proc Natl Acad Sci U S A 113 E5645-54 (2016)
  55. Positive and negative allosteric modulation of GluK2 kainate receptors by BPAM344 and antiepileptic perampanel. Gangwar SP, Yen LY, Yelshanskaya MV, Sobolevsky AI. Cell Rep 42 112124 (2023)
  56. Dynamical differences of hemoglobin and the ionotropic glutamate receptor in different states revealed by a new dynamics alignment method. Tobi D. Proteins 85 1507-1517 (2017)
  57. Self-crowding of AMPA receptors in the excitatory postsynaptic density can effectuate anomalous receptor sub-diffusion. Gupta R. PLoS Comput Biol 14 e1005984 (2018)
  58. Conformational changes at cytoplasmic intersubunit interactions control Kir channel gating. Wang S, Borschel WF, Heyman S, Hsu P, Nichols CG. J Biol Chem 292 10087-10096 (2017)
  59. The action of Con-ikot-ikot toxin on single AMPA-type glutamate receptors. Baranovic J, Braunbeck S, Zaki N, Minniberger S, Chebli M, Plested AJR. J Gen Physiol 154 e202112912 (2022)
  60. Allosteric coupling of sub-millisecond clamshell motions in ionotropic glutamate receptor ligand-binding domains. Rajab S, Bismin L, Schwarze S, Pinggera A, Greger IH, Neuweiler H. Commun Biol 4 1056 (2021)
  61. Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Yonkunas M, Buddhadev M, Flores Canales JC, Kurnikova MG. Biophys J 112 2291-2300 (2017)
  62. Further thermo-stabilization of thermophilic rhodopsin from Thermus thermophilus JL-18 through engineering in extramembrane regions. Akiyama T, Kunishima N, Nemoto S, Kazama K, Hirose M, Sudo Y, Matsuura Y, Naitow H, Murata T. Proteins 89 301-310 (2021)
  63. Site Directed Spin Labeling and EPR Spectroscopic Studies of Pentameric Ligand-Gated Ion Channels. Basak S, Chatterjee S, Chakrapani S. J Vis Exp (2016)
  64. Purification and biochemical analysis of native AMPA receptors from three different mammalian species. Rao P, Gouaux E. PLoS One 18 e0275351 (2023)
  65. Quantitative intrinsic auto-cathodoluminescence can resolve spectral signatures of tissue-isolated collagen extracellular matrix. Zielinski MS, Vardar E, Vythilingam G, Engelhardt EM, Hubbell JA, Frey P, Larsson HM. Commun Biol 2 69 (2019)
  66. Structural Arrangement Produced by Concanavalin A Binding to Homomeric GluK2 Receptors. Gonzalez CU, Carrillo E, Berka V, Jayaraman V. Membranes (Basel) 11 613 (2021)
  67. Allosteric competition and inhibition in AMPA receptors. Hale WD, Montaño Romero A, Gonzalez CU, Jayaraman V, Lau AY, Huganir RL, Twomey EC. Nat Struct Mol Biol (2024)
  68. Kainate receptor channel opening and gating mechanism. Gangwar SP, Yelshanskaya MV, Nadezhdin KD, Yen LY, Newton TP, Aktolun M, Kurnikova MG, Sobolevsky AI. Nature 630 762-768 (2024)
  69. Recovery from desensitization in GluA2 AMPA receptors is affected by a single mutation in the N-terminal domain interface. Larsen AH, Perozzo AM, Biggin PC, Bowie D, Kastrup JS. J Biol Chem 300 105717 (2024)
  70. α-Lipoic Acid Derivatives as Allosteric Modulators for Targeting AMPA-Type Glutamate Receptors' Gating Modules. Qneibi M, Nassar S, Bdir S, Hidmi A. Cells 11 3608 (2022)
  71. Dynamics and allostery of the ionotropic glutamate receptors and the ligand binding domain. Tobi D. Proteins 84 267-277 (2016)
  72. Fluorescence-Detection Size-Exclusion Chromatography-Based Thermostability Assay for Membrane Proteins. Yao H, Cai H, Li D. Methods Mol Biol 2564 299-315 (2023)
  73. Comment Follow the allosteric transitions to predict variant pathogenicity: a channel-specific approach. Absalom NL, El-Kamand S, Chua HC, Ahring PK. Brain 147 e37-e40 (2024)
  74. Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization. Ivica J, Kejzar N, Ho H, Stockwell I, Kuchtiak V, Scrutton AM, Nakagawa T, Greger IH. Nat Struct Mol Biol (2024)