7b6r Citations

Cryo-EM structure of metazoan TRAPPIII, the multi-subunit complex that activates the GTPase Rab1.

OpenAccess logo EMBO J 40 e107608 (2021)
Related entries: 7b6d, 7b6e, 7b6h, 7b70

Cited: 19 times
EuropePMC logo PMID: 34018214

Abstract

The TRAPP complexes are nucleotide exchange factors that play essential roles in membrane traffic and autophagy. TRAPPII activates Rab11, and TRAPPIII activates Rab1, with the two complexes sharing a core of small subunits that affect nucleotide exchange but being distinguished by specific large subunits that are essential for activity in vivo. Crystal structures of core subunits have revealed the mechanism of Rab activation, but how the core and the large subunits assemble to form the complexes is unknown. We report a cryo-EM structure of the entire Drosophila TRAPPIII complex. The TRAPPIII-specific subunits TRAPPC8 and TRAPPC11 hold the catalytic core like a pair of tongs, with TRAPPC12 and TRAPPC13 positioned at the joint between them. TRAPPC2 and TRAPPC2L link the core to the two large arms, with the interfaces containing residues affected by disease-causing mutations. The TRAPPC8 arm is positioned such that it would contact Rab1 that is bound to the core, indicating how the arm could determine the specificity of the complex. A lower resolution structure of TRAPPII shows a similar architecture and suggests that the TRAPP complexes evolved from a single ur-TRAPP.

Articles - 7b6r mentioned but not cited (3)

  1. Cryo-EM structure of metazoan TRAPPIII, the multi-subunit complex that activates the GTPase Rab1. Galindo A, Planelles-Herrero VJ, Degliesposti G, Munro S. EMBO J 40 e107608 (2021)
  2. Biochemical Structure and Function of TRAPP Complexes in the Cardiac System. Papaioannou P, Wallace MJ, Malhotra N, Mohler PJ, El Refaey M. JACC Basic Transl Sci 8 1599-1612 (2023)
  3. Expanding the phenotypic spectrum of TRAPPC11-related muscular dystrophy: 25 Roma individuals carrying a founder variant. Justel M, Jou C, Sariego-Jamardo A, Juliá-Palacios NA, Ortez C, Poch ML, Hedrera-Fernandez A, Gomez-Martin H, Codina A, Dominguez-Carral J, Muxart J, Hernández-Laín A, Vila-Bedmar S, Zulaica M, Cancho-Candela R, Castro MDC, de la Osa-Langreo A, Peña-Valenceja A, Marcos-Vadillo E, Prieto-Matos P, Pascual-Pascual SI, López de Munain A, Camacho A, Estevez-Arias B, Musokhranova U, Olivella M, Oyarzábal A, Jimenez-Mallebrera C, Domínguez-González C, Nascimento A, García-Cazorla À, Natera-de Benito D. J Med Genet 60 965-973 (2023)


Reviews citing this publication (4)

  1. Who's in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. Borchers AC, Langemeyer L, Ungermann C. J Cell Biol 220 e202105120 (2021)
  2. Focus on the Small GTPase Rab1: A Key Player in the Pathogenesis of Parkinson's Disease. Martínez-Menárguez JÁ, Martínez-Alonso E, Cara-Esteban M, Tomás M. Int J Mol Sci 22 12087 (2021)
  3. The TRAPP complexes: oligomeric exchange factors that activate the small GTPases Rab1 and Rab11. Galindo A, Munro S. FEBS Lett 597 734-749 (2023)
  4. The TRAPP complexes: discriminating GTPases in context. Bagde SR, Fromme JC. FEBS Lett 597 721-733 (2023)

Articles citing this publication (12)

  1. Structure of the Mon1-Ccz1 complex reveals molecular basis of membrane binding for Rab7 activation. Klink BU, Herrmann E, Antoni C, Langemeyer L, Kiontke S, Gatsogiannis C, Ungermann C, Raunser S, Kümmel D. Proc Natl Acad Sci U S A 119 e2121494119 (2022)
  2. Structural basis for assembly of TRAPPII complex and specific activation of GTPase Ypt31/32. Mi C, Zhang L, Huang G, Shao G, Yang F, You X, Dong MQ, Sun S, Sui SF. Sci Adv 8 eabi5603 (2022)
  3. Structure of a TRAPPII-Rab11 activation intermediate reveals GTPase substrate selection mechanisms. Bagde SR, Fromme JC. Sci Adv 8 eabn7446 (2022)
  4. The P4-ATPase Drs2 interacts with and stabilizes the multisubunit tethering complex TRAPPIII in yeast. Pazos I, Puig-Tintó M, Betancur L, Cordero J, Jiménez-Menéndez N, Abella M, Hernández AC, Duran AG, Adachi-Fernández E, Belmonte-Mateos C, Sabido-Bozo S, Tosi S, Nezu A, Oliva B, Colombelli J, Graham TR, Yoshimori T, Muñiz M, Hamasaki M, Gallego O. EMBO Rep 24 e56134 (2023)
  5. Structure of the metazoan Rab7 GEF complex Mon1-Ccz1-Bulli. Herrmann E, Schäfer JH, Wilmes S, Ungermann C, Moeller A, Kümmel D. Proc Natl Acad Sci U S A 120 e2301908120 (2023)
  6. The Uso1 globular head interacts with SNAREs to maintain viability even in the absence of the coiled-coil domain. Bravo-Plaza I, Tagua VG, Arst HN, Alonso A, Pinar M, Monterroso B, Galindo A, Peñalva MA. Elife 12 e85079 (2023)
  7. Folliculin Prevents Lysosomal Degradation of Human Papillomavirus To Support Infectious Cell Entry. Ishii Y, Yamaji T, Sekizuka T, Homma Y, Mori S, Takeuchi T, Kukimoto I. J Virol 97 e0005623 (2023)
  8. TRAPP structures reveal the big picture. Glick BS. EMBO J 40 e108537 (2021)
  9. A Humanized Yeast Model for Studying TRAPP Complex Mutations; Proof-of-Concept Using Variants from an Individual with a TRAPPC1-Associated Neurodevelopmental Syndrome. Zykaj E, Abboud C, Asadi P, Warsame S, Almousa H, Milev MP, Greco BM, López-Sánchez M, Bratkovic D, Kachroo AH, Pérez-Jurado LA, Sacher M. Cells 13 1457 (2024)
  10. An online gathering about the latest on molecular membrane biology. Bottanelli F, Spang A, Stefan C, Ungermann C. J Biol Chem 297 101237 (2021)
  11. Regulation of adaptive growth decisions via phosphorylation of the TRAPPII complex in Arabidopsis. Wiese C, Abele M, Al B, Altmann M, Steiner A, Kalbfuß N, Strohmayr A, Ravikumar R, Park CH, Brunschweiger B, Meng C, Facher E, Ehrhardt DW, Falter-Braun P, Wang ZY, Ludwig C, Assaad FF. J Cell Biol 223 e202311125 (2024)
  12. SP-141 targets Trs85 to inhibit rice blast fungus infection and functions as a potential broad-spectrum antifungal agent. Wu XY, Dong B, Zhu XM, Cai YY, Li L, Lu JP, Yu B, Cheng JL, Xu F, Bao JD, Wang Y, Liu XH, Lin FC. Plant Commun 5 100724 (2024)